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STELLAR & Cell Neighborhoods

Moderator: Ellen Quardokus, Indiana University

Presenters:

« John Hickey, Duke University
« Jure Leskovec, Stanford University
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Method of the Year 2024: spatial proteomics

nature methOdS Editorial 06 Dec 2024

https://www.nature.com/nmeth/volumes/21/issues/12

Method of the Year 2024:
spatial proteomics




John Hickey, Duke University
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Who am |?

It Depends on What You Analyze

My “origin” My “phenotype”

natureprotocols

nature methods ;';;,";;;alogy ‘
for ': '«1’\

My “state”

'wf’n




Katy Borner 15 = i Meryl Sarah Jac...

% Katy Borner 7 Ellen Quardokus John Hickey A % Meryl Sarah Jacob

Who am |?

2. It Depends on How You Analyze

Ranked Quantities Differentiation Trajectory

Biotechnologist/

mworking Systems Immunologist

msleeping
mkids Biomedical Engineer

meating/cooking ‘
@Emiscelaneous .
Chemical Engineer Co rrelatlons

Comparison to Others

Top Differential Expressed

ﬁ Cross-Disciplinary
? Collaboration Grams of chocolate

Technology | consume/day
i &7 > Computational
; Teaching/Mentoring
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How would you define yourself if you were a cell?

As a human cell, | am a tiny, yet essential
unit of life, working tirelessly within a
vast, interconnected community to
maintain balance and support the body’s
functions. | carry the blueprint of
existence within my nucleus, adapt to my
environment, and collaborate with
neighboring cells to ensure the survival
and well-being of the organism | inhabit.

ChatGPT 2024




Tissues: Multi-scale Network of Interactions

Cancer: Tissue: Intercellular: Intracellular:
City of Network Interactions Cellular Neighborhoods Molecular Connections Molecular Connections
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(Hickey, Cell Systems, 2024)



Tissues: Multi-scale Network of Interactions

(Hickey, Cell Systems, 2024)
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CODEX Multiplexed Imaging - Deconstruct complexity across scales

Network Interactions Multicellular Structure Spatial Cell-type Definitions 50+ Molecular Measurements
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Multiplexed Imaging Standardization & Pipelines

Protocols

(Black*, Phillips*, Hickey*, Nature Protocols, 2021)

Antibody Panel Development

G Fap Ao e crt 2281 Therme Fish 130308

(Quordokus, Nature Methods, 2023)

Data Processing & Storage

Level of Processing

0 (Raw Data) Raw Data

1 (Processed) Stitching, tiling, thresholding, background subtra

deconvolution, alignment, and extended depth ol

(Hickey*, Neumann*, Radtke* Nature Methods, 2021)

Data Normalization & Cellular Analysis

a Normalization Method

Original z

z)

min_max

(oni) #4]
z norm of

markers »

(og)
z norm of each
marker then cell

(min)
min & max of
each marker

L1

g

x = min

max — min

(Hickey, Frontiers Immunology, 2021)

CODEX step

Metadata requirement

4

Data Metadata Standardization

Array creation Panel design Sectioning Stain CODEX run
Donor 1D

Sample ID

Tissue ID

Aray

Batch organization

(Caraccio, Hickey, Elsevier, in press)

Marker, Cell, Tissue Unit Ontology
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Al to help with computing and analyzing this big data
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Neighborhood Analysis Reveals Conserved Multicellular Structures of Intestine

Enterocyte
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How Can We Analyze Hierarchical Spatial Domains?

Neighborhood - County

Counties - State States - Country
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Overall structure of intestine by multi-level analysis of functional units

Small Intestine Colon
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(Hickey*, Nevins*, Becker*, Nature, 2023)




Overall structure of intestine by multi-level analysis of functional units
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Chronic Inflammation-Associated Cancers (CIACs) Sides— Thea sty
A Shared Pattern of Tissue Disruption CANGER

STOMACH

COLON

OESOPHAGUS

NORMAL . METAPLASIA ‘DYSPLASIA




Communities of Neighborhoods Highlight Lack of Organization in Tumor

Community

Squamous Epithelial
Oxnto-Cardiac/Specialized -
Inflamed Muscle 1

Inflamed CK7hi Epithelial 4
Specialized & Mature Intestinal
Follicle & Mature Intestinal 4
Atrophic Cardiac Enriched -

Inflamed Dysplasia
Community 1 Inflamed-Stroma

. 0, . {74 . )
ArZO% B:28% O:25% * Inflamed Mature Intestinal
! ¢ Shannon Diversity

p63+ Specialized & p53+
Squamous  Atrophic Cardiac

Lineage-

Community 2
A:80% B:5% C:5% D:10%
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Immune Cell Therapies for Cancer

Non-engineered immune cell therapies Engineered immune cell therapies

Apheresis Tumor resection Banked Apheresis Blood draw Cord blood
donor T cells e

Treg isolation, T cell isolation,

; > Expansion Immune cell isolation, genetic modification, expansion
expansion expansion

Viral-specific CTL Engineered CAAR-T CAR-Treg CAR-NK
TCR

(Weber, Cell, 2020)




Teams of people working together

R&D
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Engineering




Cellular Neighborhood Organization in Human Tumors

Human Cellular Neighborhood (hCN)
DC Enriched Immune
Epithelial/Skin Appendages
Follicle
Immune Infiltrate
Inflamed Tumor
Macrophage Enriched Immune
Neutrophil Enriched
PDPN+ Stromal Enriched
Perivascular
Productive T cell & Tumor
Proliferating Tumor
Resting Tumor
Stromal Enriched
Tumor & Immune
Vasculature
Vasculature & Immune

Responder Post CPI (Patient ID: 2)

(Hickey, Cell Reports, 2023)




Cellular Neighborhood Organization in Human Tumors

Human Cellular Neighborhood (hCN)
DC Enriched Immune
Epithelial/Skin Appendages
Follicle
Immune Infiltrate
Inflamed Tumor
Macrophage Enriched Immune
Neutrophil Enriched
PDPN+ Stromal Enriched
Perivascular
: Productive T cell & Tumor
S e S ey Proliferating Tumor

:1CP3 CD45-CD68 CD8| Resting Tumor
- ; Stromal Enriched
Tumor & Immune
Vasculature
Vasculature & Immune

o sl

_ Human Cellular Neighborhood
B b %@ 0 @ @ (Hickey, Cell Reports, 2023)




Cancer: Tissue: Intercellular: Intracellular:
City of Network Interactions Cellular Neighborhoods Molecular Connections Molecular Connections

Cinmune &3

IFNy Induced

=
o
3
L)
@
o
>
S
o
c
@
¥
o

(Hickey, Cell Systems, 2024)




CODEX Multiplexed Imaging - Deconstruct complexity across scales

Network Interactions Multicellular Structure Spatial Cell-type Definitions 50+ Molecular Measurements
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Reconstruct complexity across scales - Multiscale Modeling

Emergent Behavior Spatial Interactions Cell Type Agents Molecular Rules
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(Hickey, Cell Systems, 2024)




Ant Agent-based Model




Multi-scale Agent-based Modeling of the T Cell Immunotherapy

No T cells Transformed T cells

IFNg ng/mL

16.0
14.0
12.0

+10.0

8.0
6.0
4.0
2.0

0.0

@ Foistumor @ POL1-tumor  © PD1+Tcell  ® PD1-Tocel ﬁ
l K;: (Hickey, Cell Systems, 2024) : Duke




Microscopy

Immunoassays

DNA/RNA
sequencing

Flow/Mass
cytometry

Multiplexed
tissue imaging

Enabling Technology

A rethinking of therapies

Diagnostic Therapeutic

Bacterial detect Antib

Genetic aberrations

Aberrant cell po

marker expressior

Cell interactions

multicellular structures
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Hickey Lab: Synergy and Bridging Omics, Computation, and Engineering

Multiscale Tissue Structure: Single Cell A A\ Multiscale Computational A A\ Tissue Structure Control: Cell
= Approaches for Mechanism

Spatial-Omics Technologies Reprogramming and Biomaterials

| Repeat

Our expertise.

leling

Duke

ILKE



Jure Leskovec, stanford University
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Jure Leskovec

Building
Foundation Models for the i rford Universit

Al Virtual Cell


https://docs.google.com/file/d/1zRfX3pvovyIkwUYsiLvIO7OajIPyqcyX/preview

, Building Jure Leskovec
Foundation Models for the  ganford University

Al Virtual Cell



Cell is a Fundamental Unit of Life

= (Cells are essential for health and disease

= Advances in Al and omics offer new opportunities to
rethink traditional models

Cell ¢? CellPress l

Leading Edge OPEN ACCESS

How to build the virtual cell with artificial | |
intelligence: Priorities and opportunities /




Simulating Biology with the Al Virtual Cell

How can we simulate biology?

= Multi scale, non-linear,
stochastic/noisy, measured in
different ways, incomplete data

We create an Al Virtual Cell:

A connected framework of Al models
that simulate increasingly complex
and dynamic biological systems.

How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities (Bunne, Roohani, Rosen et af




Connecting Biology’s Physical Scales

Molecular scale Cellular scale Multicellular scale
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A connected framework of Al models that
simulate increasingly complex and dynam’
biological systems.




a. Cellular building blocks, environments, ...

Molecular scale Cellular scale Multicellular scale
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b. Building the Al Virtual Cell through Universal Representations...

Molecular scale

Cellularscale Multicellular scale

e.g., phenotypic readouts
from imaging and omics

molecular
Universal
Representation

Modeling spatial interactions
and cell-cell communication.

cellular
Universal
Representation

Al Virtual Cell

E multicellular
Universal

E Representation

cell UR E




The Power of Representation Learning

Learning universal representation spaces unlocks
fundamental capabillities for biomedicine.

molecular UR

cellular UR

multicellular UR

N
— e
=
——
physical scales




1l

Virtual Instruments

Manipulate: Diffusion Models
Embedding -> Embedding |

What happens to a cell after a

drug is applied? Promoting
Decode:
Embedding -> Readout

What is the 3d structure of a
protein”?




Physical cell

This talk: Al Virtual Cell

Molecular scale

Cellular scale Multicellular scale
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Al Virtual Cell

Molecular scale Cellular scale Multicellular scale

(1 DNA ™\ e.g., phenotypic readouts Modeling spatial interactions
& from imaging and omics and cell-cell communication.
&

A
o molecular [E B cellular
NEE / Universal Universal
(" B Representjtion Representation
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) 0 >@
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Representation
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Protein Language Models

Protein Language Models: ProtT5, ESM [+
encode the whole protein universe nat |re

= Motivated by ChatGPT & AlphaFold
= Trained on 250M+ proteins

Protein Embeddings encode:
= Structure
= Molecular propt.
= Orthology




Molecular scale Cellular scale Multicellular scale
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Universal Cell Embeddings

Yanay Rosen*, Yusuf Roohani*, Ayush Agrawal,
Leon Samotoréan, |
Stephen Quake, Jure Leskovec

niversal Cell Em ings: A Foundation Model for Cell Biol (Rosen, Roohani et al. Preprint)

Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN (Rosen, Brbic, Roohani et al. Nature



Cell Atlas Datasets
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Goal: Cross-Species
Cell Embedding Space




Universal Spaces are Fixed

= Representations of data should be consistent and fixed
= ChatGPT works without finetuning

(Must Retrainsj
| - the Model
QE > o Map new data {
directely l
\2

New Data
f 2 @ (1

Zero-shot
Same B
e i Representation

Existing Data \ J \




bio-aivc-Multiscale Human Event-dec24-short.mp4

We built a Cellular-Scale
Foundation Model

Al Virtual Cell

Molecular scale

Cellular scale

Multicellular scale

E

e.g., phenotypic readouts
from imaging and omics

cellular
Universal

Representation

Modeling spatial interactions
and cell-cell communication.
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multicellular
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The Universal Cell Embedding (UCE) Model

Input Transformer Input

KGV MOdeI ChOICGS RNA Expression Cell Representation

= (Gene expression is not olasngecel
natural language

= Auniversal space is a
fixed space

= Foundation Models
are zero-shot

= Self-supervised
= Organization is
emergent

~

Cell

Representation
Sample genes
by expression,

sort by genomic
location

ey

Represent gene tokens ug /
protein language models =~ | A

Expr >0
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Genes

Expr
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Expression



The Universal Cell Embedding (UCE) Model

Input Transformer Input

Representation

Inspired Transformer =S
- 33 Layers, 650M Parameters
- Trained for 40 days on 24
A100 80GB GPUs

- Se |f- Su perVI Sed g‘ Represent gene tokens us
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emergent

Expression



Integrated Mega-scale Atlas (IMA

Emergent organization of 36M cells

1000 Cell Types 350 Datasets 50 Tissues 8 Species

UMAP2
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Map new data with no fine-tuning

Map new data to
same fixed space

= Even novel species!
(No BLAST)

Colored by cell type



Cell Type Organization Naturally Emerges

plasma cell type i pneumocyte
. NKg ce:: - — | E club cell Alveolar Epithelial
mature cel type ii pneumocyte
Lymphocytes NK cell lung ciliated cell
cd4 t cell basal cell
cd8 t cell — serous epithelium bronchus . .
Dendritic Cells myeloid dendritic cell :_ pulmonary ionocyte Secretory Epltheha'
plasmacytoid dendritic cell respiratory goblet cell
MACTOPhage m— capillary endothelial cell
monocyte e - endothelial cell of artery Endothelial
Monocytes classical monocyte - vein endothelial cell
intermediate monocyte E" pericyte
non-classical monocyte bronchial smooth muscle cell Connective Tissue
neutrophil vascular smooth muscle cell
Granulocytes basophil endothelial cell of lymphatic vessel
mast cell mesothelial cell

adventitial cell
alveolar type 2 fibroblast cell

Stromal

Tabula Sapiens v2 Lung
Inferred Cell Hierarchy




Molecular scale Cellular scale Multicellular scale
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GEARS: Predicting transcriptional outcomes of
novel multi-gene perturbations |

Yusuf Roohani, Kexin Huang, Jure Leskovec
Stephen Quake, Jure Leskovec




Problem Formulation

Predict the outcome of a genetic perturbation

Perturbed
Gene expression Gene expression

9| =0.4 al =9
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Unperturbed Genetic Perturbed
cells perturbation cells
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What is the gene expression response of perturbing «
combination of genes not seen experimentally perturbec



There are 4x108 pairwise
combinations of all known
protein coding genes

Pick 100 genes
5000 unique combinations
of 2 gene perturbations

1 61 700 unigue combinations

of 3 gene perturbations

3921225 unique combinati p

of 4 gene perturbations




Why is this useful?

1. Drug target
discovery

Identify therapeutic
targets that can reverse
disease phenotypes

2. ldentifying genetic

interactions

w-#-

vnable vmble

P

viable lethal

Predict genetic
interactions

3. Re-
engineering cells

Old immune  Young immune
cell /i




Our Approach: GEARS

Unperturbed - E O \‘\
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e @Mbedding (Gene Ontology) Operator MLP Layer MLP Layer state

A deep learning model constrained by pri
Knowledge of gene-gene relationships

GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations
Yusuf Roohani, Kexin Huang, Jure Leskovec, Nature Biotech, 2023




Results: Predicting non-additive
genetic interactions

“‘ PTPN12 + “\ ZBTB25
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Non-additive effect on gene expression upon perturbing the combination PTPN12+ZBTB25
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Generalizing to unseen genes

Double Perturbation  Double Perturbation Double Perturbation

(0 Unseen of 2) (1 Unseen of 2) (2 Unseen of 2)
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- replication tlssue
3 o0
b I
8 trmscnptlon @
‘B
> target receptor
= MJMITN RNA @ @
[ransl ation "gaﬁsr
molecular cellular
@ protein interaction mteractlon
)g& metabolites
spatial organlzation

Annotation of Spatially Resolved Single-cell Data
with STELLAR. )

Brbic*, Cao*, Hickey*, Tan, Snyder, Nolan, Leskovec
Nature Methods 2022.




Spatially Resolved Single-Cell Data

Figure from Vizgen MERFISH Mouse Brain
Receptor Map dataset

= Captures spatial context of cells

= Each cell is represented with a
smaller number gene/protein
expressions and cell coordinates

organization of the ce

their molecular feat”




Solution: Graph Neural Networks

Capture spatial and
molecular context of cells

using graph convolutional
neural networks

Determine node Propagate and
computation graph transform information
L S Uncertainty ba?/"g
: A adaptive marging Z=°5%

learning speed/ &\ 4

Adaptive margin ' '

classes
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Our Method: STELLAR

il et e 1 Graph
7 o e convolutiona
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i i 0% 0° g Assign cells in the
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Annotation of Spatially Resolved Single-cell Data with STELLAR.
Brbic*, Cao*, Hickey*, Tan, Snyder, Nolan, Leskovec. Nature Methods 2022.




STELLAR: Cell labeling
Accuracy computed
based on expert 1.0 | Qe Cintl
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Can We Annotate Cancer Donor Tissue
using Healthy Donor Tissue?

Reference labeled data: Unlabeled data:
Healthy tonsil tissue Esophageal cancer

Colors denote | ©. citessrtn. = U

different cell | ggi/5ilamr -2 o
types @ P RO ) ‘

CODEX multlplexed ‘

’» DEX mltipee |
imaging data imaging data




Can We Annotate Cancer Tissue using
Healthy Tissue”

Healthy tonsnl tlssue Esophageal cancer

= Distribution between cell types
and their spatial organiz=t»an is
different

CO!DEX rnurtlplexed CODEX multlplexed 3 0U1E of 12 cell ty
imaging data imaging data only in the cancer




"*STELLAR Correctly Annotates
Cancer Tissue

Cells are colored
according to their o Novel cell type
cell types Ground truth STELLAR predictions
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onclusion: Al Virtual Cell

a. Multi-modal measurements across Al Virtual Cell Universal
different scales of the ce Foundation Model Representations
... g
cell molecular UR a ™ T 3
=
v
molecule localization ‘D
—(@—P cellular UR =
phenotypic ¢g. B L single-cell -g'
information ESS ‘-:a -‘ e RNA-seq
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Papers

How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities,
Bunne, Roohani, Rosen et al. Cell ‘24.

Universal Cell Embeddings: A Foundation Model for Cell Biology. Rosen, Brbié,
Samotor¢an, Roohani, Quake, Leskovec, '24.

MARS: Discovering Novel Cell Types across Heterogenous Single-cell
Experiments. Brbic, Zitnik, Wang, Pisco, Altman, Darmanis, Leskovec. Nature
Methods ’20

Annotation of Spatially Resolved Single-cell Data with STELLAR. Brbic”«*
Hickey*, Tan, Snyder, Nolan, Leskovec. Nature Methods 2022.

GEARS: Predicting transcriptional outcomes of novel multi-gene pe
Yusuf Roohani, Kexin Huang, Jure Leskovec, Nature Biotech, 2023.
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Questions

How do we define a Multiscale Human?
How do we map a Multiscale Human?
How do we model a Multiscale Human?

How can Large Language Models (LLMs) or Retrieval-Augmented
Generation (RAGs) be used to advance science and clinical practice?
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