

10PM

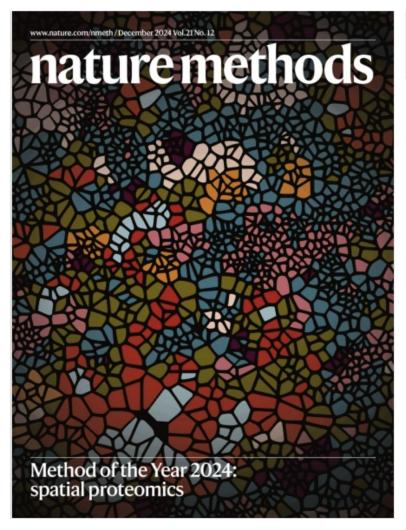
3AM in London (GMT), 12PM in Tokyo (GMT+9)

STELLAR & Cell Neighborhoods

Moderator: Ellen Quardokus, Indiana University

Presenters:

- John Hickey, Duke University
- · Jure Leskovec, Stanford University

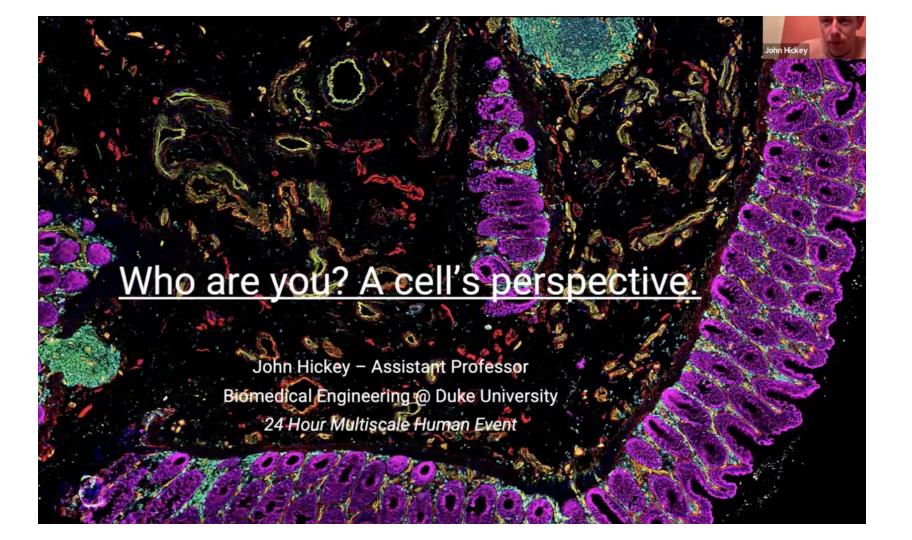


Method of the Year 2024: spatial proteomics

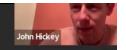
Editorial 06 Dec 2024

https://www.nature.com/nmeth/volumes/21/issues/12

John Hickey, Duke University



Who am I?



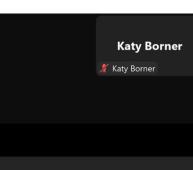
It Depends on What You Analyze

My "origin"

My "phenotype"

What I "do"

My "state"



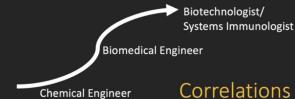
Meryl Sarah Jacob

Who am I?

Chemical Engineer

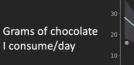
2. It Depends on How You Analyze

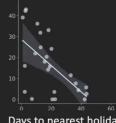
Ranked Quantities Differentiation Trajectory



I consume/day

Comparison to Others



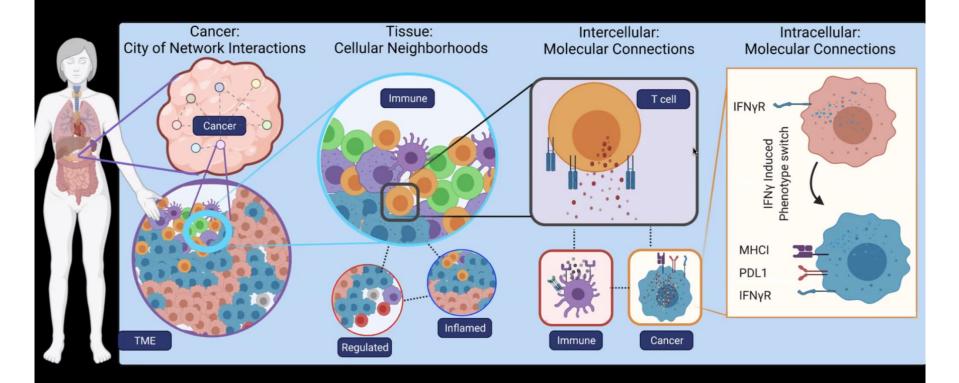


Days to nearest holiday

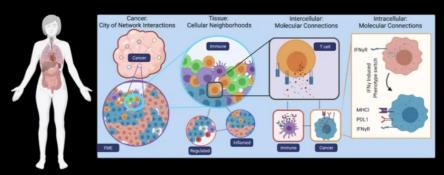
How would you define yourself if you were a cell?

As a human cell, I am a tiny, yet essential unit of life, working tirelessly within a vast, interconnected community to maintain balance and support the body's functions. I carry the blueprint of existence within my nucleus, adapt to my environment, and collaborate with neighboring cells to ensure the survival and well-being of the organism I inhabit.

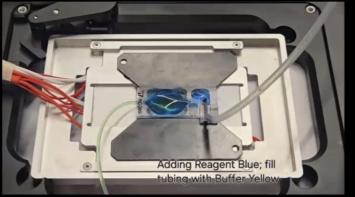
Tissues: Multi-scale Network of Interactions



Tissues: Multi-scale Network of Interactions

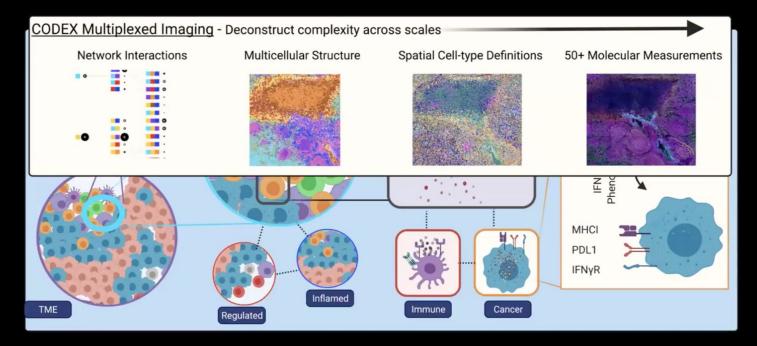


Microscopes & Robotics



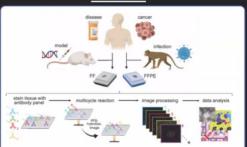
Duke

Deconstructing Complexity Across Scales: Spatial-o



Multiplexed Imaging Standardization & Pipelines

Protocols



(Black*, Phillips*, Hickey*, Nature Protocols, 2021)

Antibody Panel Development

á		ne Aeribodo	Daniel (Chicker)	for Midriela	and Antibody	Based Imagi	ng of Human		COOKY	
,	Organ mappy	of secretory	and (coase)	to morpe	ata visianoù	nesto magn	g or represent	neesting with	COURT	
	Author Name	John Hirkey								
	Author OROI		961.7673							
	Reviewer(s):									
	Reviewer OR									
,	General Publ									
			vg/10.48539/	HBM373 HO	38.363					
	Date:	6-May-22								
0	Version Nurr									
	uniprot acce	HGNC ID	target name	antibody na	host_organis	rionality	vendor	catalog our	lot_number	recomi
5		HGNC:7107		Anti-6567 an		856	BD Biosciene			No
	P01589	HGNC:6008	CD25	Anti-CD25 at	mouse	7G786	Blo X Cell	8E0014	NA	No
4	P08195	HGNC:11026	CD98	Anti-CD98 at	mouse	MEM-108	Biolegend	315602	NA	No
	P08670	HGNC:12692	Vimentin	Anti-Viment	mouse	RV202	BD Biosciens	550513	NA	No
6	Q9P2W7	HGNC921	CD57	Anti-CDS7 an	mouse	HCD57	Biolegend	322302	NA	No
	P2671E	HGNC:18788	NKG2D (CDS	Anti-NKG2D	mouse	1011	Biolegend	320802	NA	No
8	P09564	HGNC:1695	CD7	Anti-CD7 and	mouse	CD7-687	Biolegend	343102	NA	No
	P01730	HGNC:1678	CD4	Anti-CD4 and	rat	A161A1	Biolegend	357402	NA	No
0	P15391	HGNC:1633	CD19	Anti-CD19 an	mouse	HB19	BD Biasciene	555410	NA	No
	PO4233	HGNC:1697	HLA-DR	Arti-HLA-DR	mouse	L243	Biolegend	307651	NA	No
	P20702	HGNC6152	CD11c	Anti-CD11c a	mouse	B-ly6	BD Biosciens	555391	NA	No
	Q12918	HGNC:6373	CD163	Arti-CD161	mouse	HP-3G10	Biolegend	339902	NA	No
	P08247	HGNC:11506	Synaptophys	Anti-Synapto	mouse	7H12	Novus Bio	NBP1-47483	NA	No
	P28906	HGNC:1662	CD34	Anti-C034 an	mouse	561	Biolegend	343602	NA	No
6	P08637	HGNC:3619	CD16	Anti-CD16 an	mouse	3G8	BD Biosciens	555404	NA	No
	P22083	HGNC4015	CD15	Anti-CD15 an	mouse	H98	BD Blosciens	555400	NA	No
	Q12884	HGNC:3590	FAP	Anti-SAP and	rat	2.2810	Thermo Fish	13-0300	NA	No .

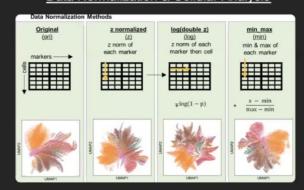
(Quordokus, Nature Methods, 2023)

Data Processing & Storage

State	Level of Processing				
0 (Raw Data)	Raw Data				
1 (Processed)	Stitching, tiling, thresholding, background subtraction deconvolution, alignment, and extended depth of				

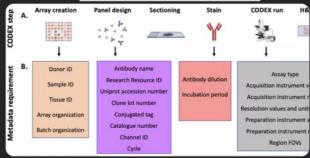
(Hickey*, Neumann*, Radtke* Nature Methods, 2021)

Data Normalization & Cellular Analysis



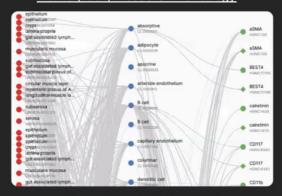
(Hickey, Frontiers Immunology, 2021)

Data Metadata Standardization



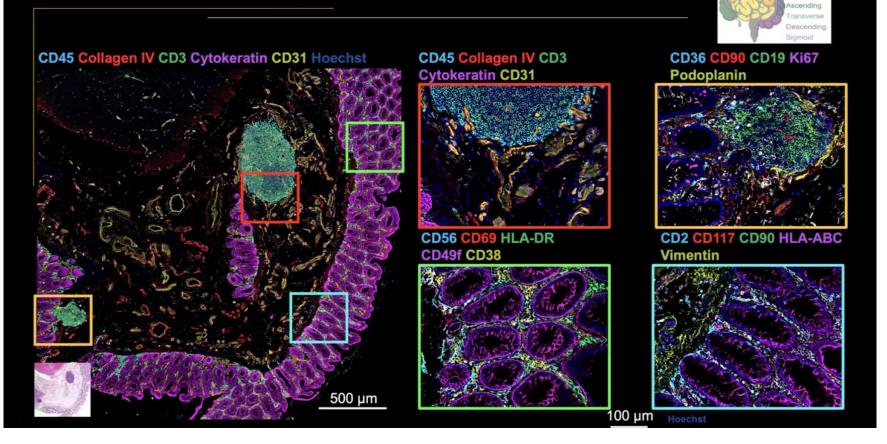
(Caraccio, Hickey, Elsevier, in press)

Marker, Cell, Tissue Unit Ontology

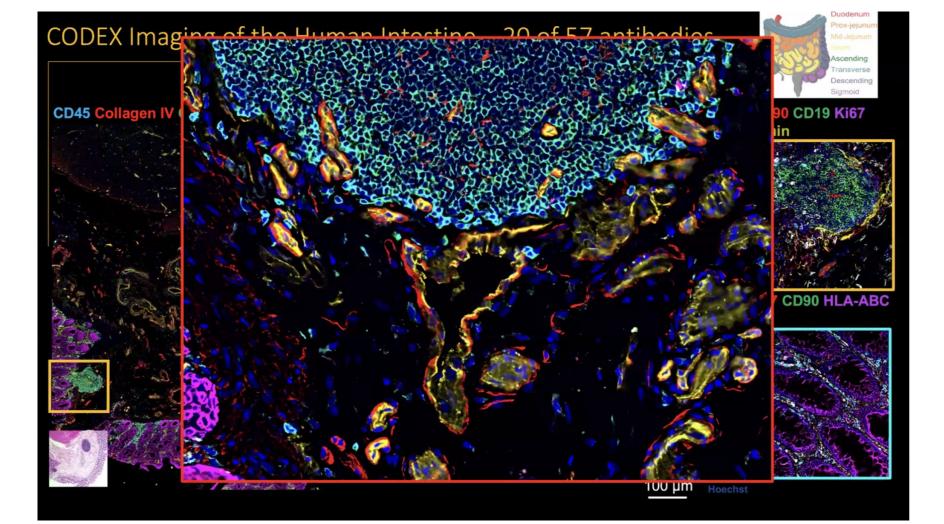


(Borner, Nature Cell Biology, 2021)

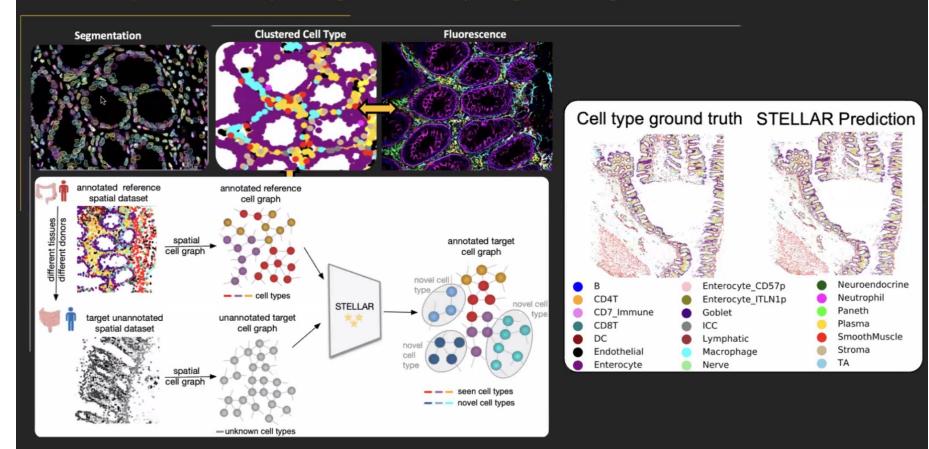
CODEX Imaging of the Human Intestine – 20 of 57 antibodies



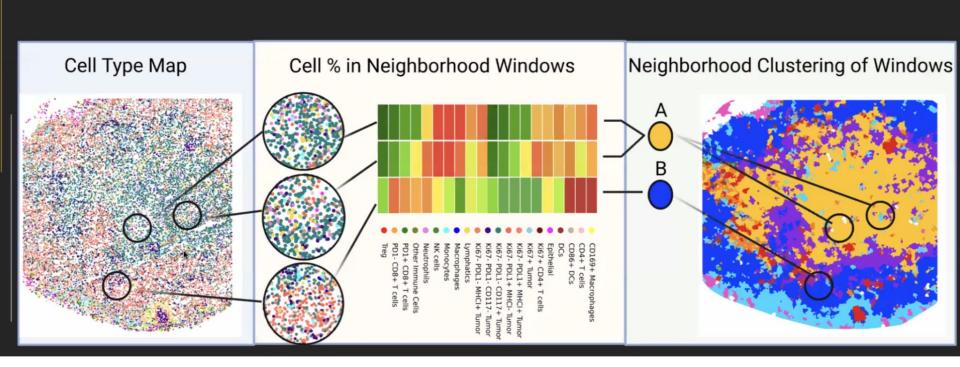
John Hickey



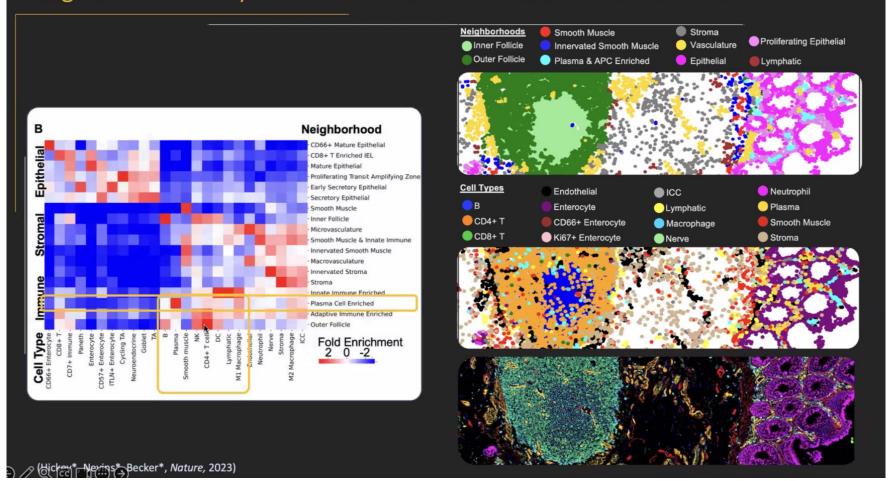
Al to help with computing and analyzing this big data



Multi-cellular Neighborhood Identification



Neighborhood Analysis Reveals Conserved Multicellular Structures of Intestine



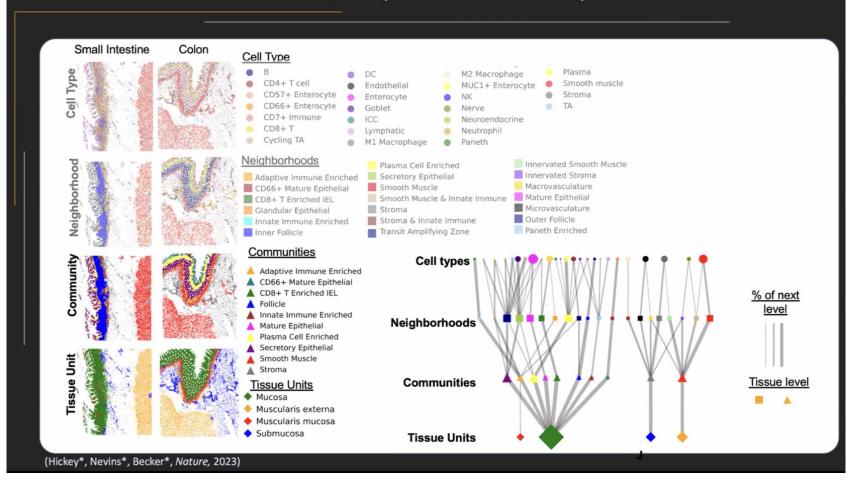
How Can We Analyze Hierarchical Spatial Domains?

Neighborhood - County

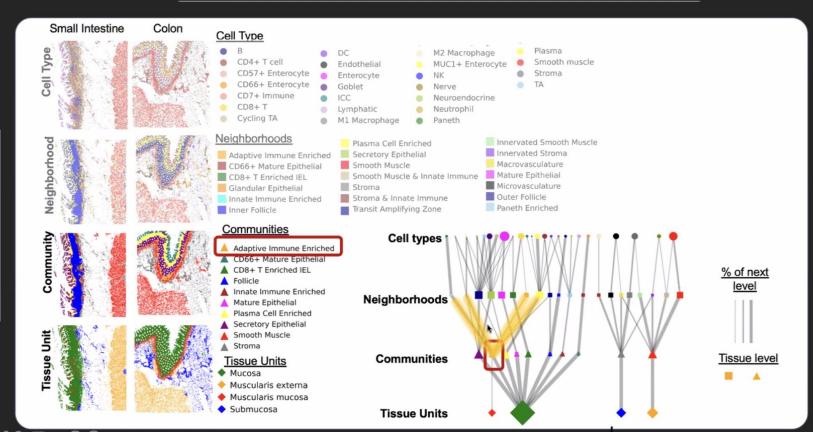
Counties - State

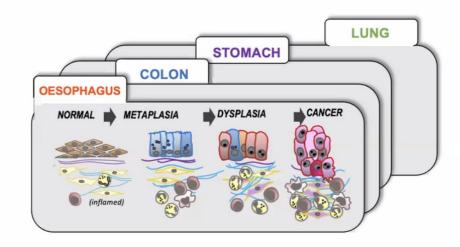
States - Country

Overall structure of intestine by multi-level analysis of functional units

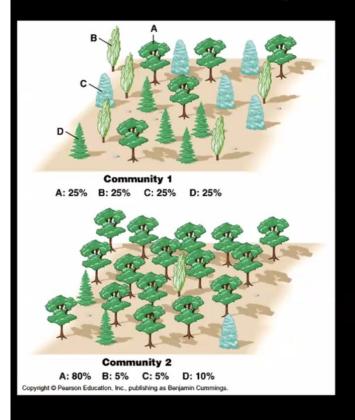


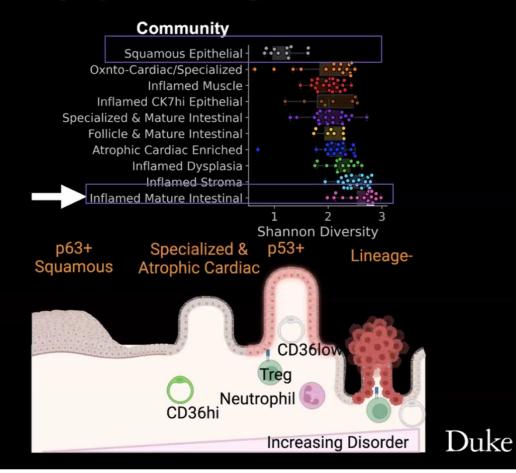
Overall structure of intestine by multi-level analysis of functional units



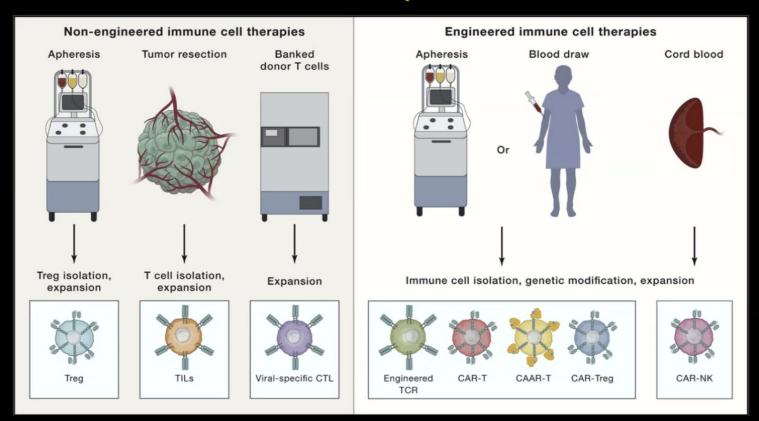


Communities of Neighborhoods Highlight Lack of Organization in Tumor



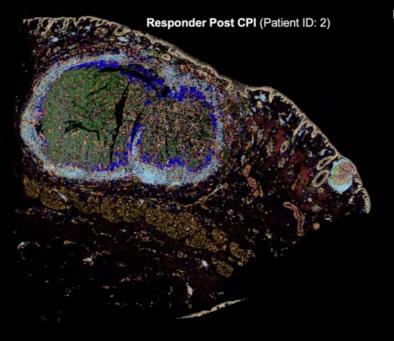


Immune Cell Therapies for Cancer



Teams of people working together

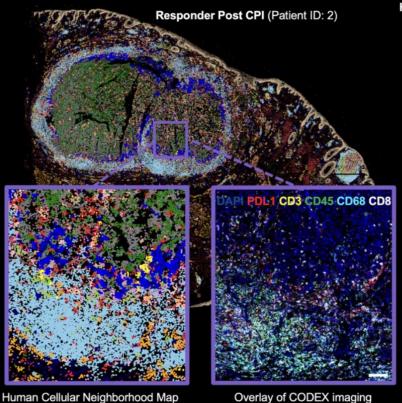
Cellular Neighborhood Organization in Human Tumors



Human Cellular Neighborhood (hCN)

- DC Enriched Immune
- Epithelial/Skin Appendages
- Follicle
- Immune Infiltrate
 Inflamed Tumor
- Macrophage Enriched Immune
- Neutrophil Enriched
- PDPN+ Stromal Enriched
- Perivascular
- Productive T cell & Tumor
- Proliferating Tumor
- Resting Tumor
- Stromal Enriched
- Tumor & Immune
- Vasculature
- Vasculature & Immune

Cellular Neighborhood Organization in Human Tumors

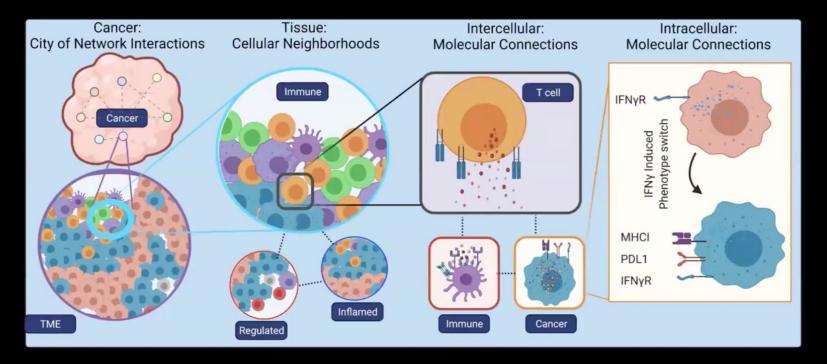


Human Cellular Neighborhood (hCN)

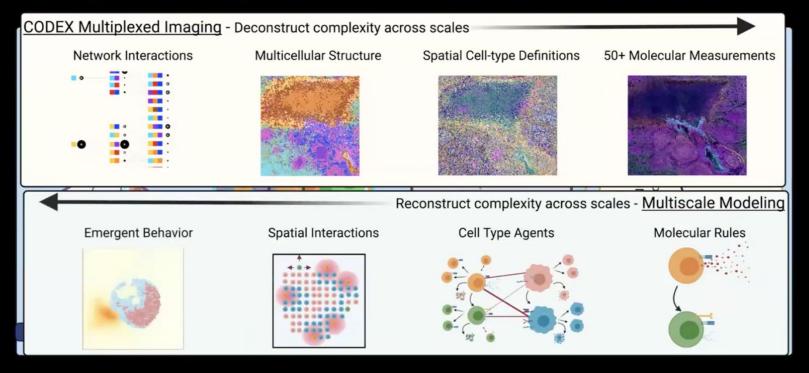
- DC Enriched Immune
- Epithelial/Skin Appendages
- Follicle
- Immune Infiltrate Inflamed Tumor
- Macrophage Enriched Immune
- Neutrophil Enriched
- PDPN+ Stromal Enriched
- Perivascular
- Productive T cell & Tumor
- **Proliferating Tumor**
- **Resting Tumor**
- Stromal Enriched
- Tumor & Immune
- Vasculature
- Vasculature & Immune

Overlay of CODEX imaging

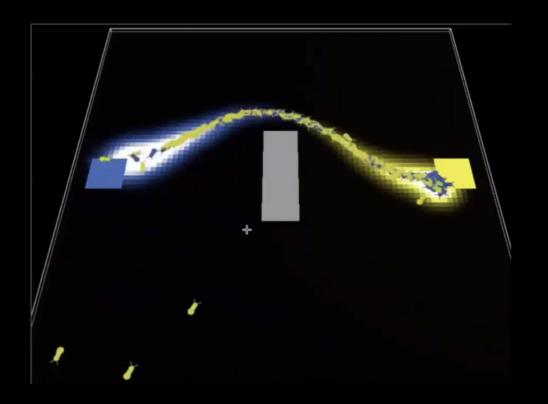
Recreating Complexity Across Scales Compliments Deconstructing



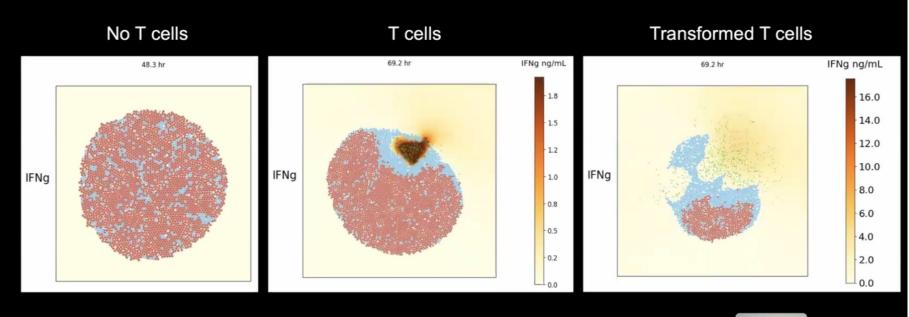
Recreating Complexity Across Scales Compliments Deconstructing



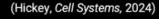
Ant Agent-based Model



Multi-scale Agent-based Modeling of the T Cell Immunotherapy

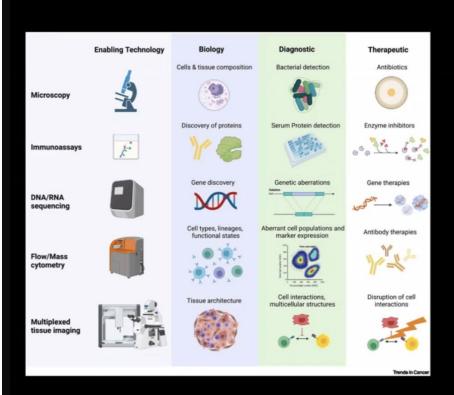


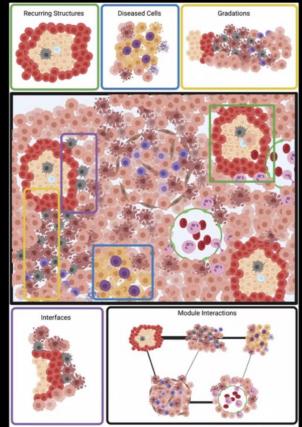
PDL1- tumor PD1+ T cell PD1- T cell



Duke

A rethinking of therapies



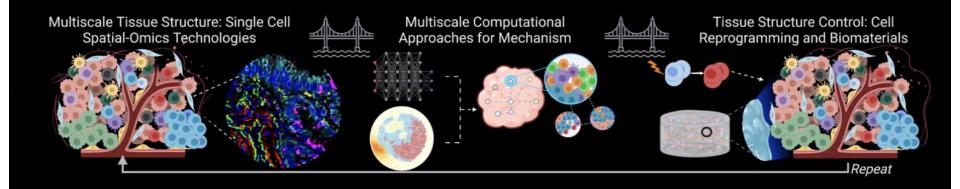


Duke

John Hickey - john.hickey@duke.edu

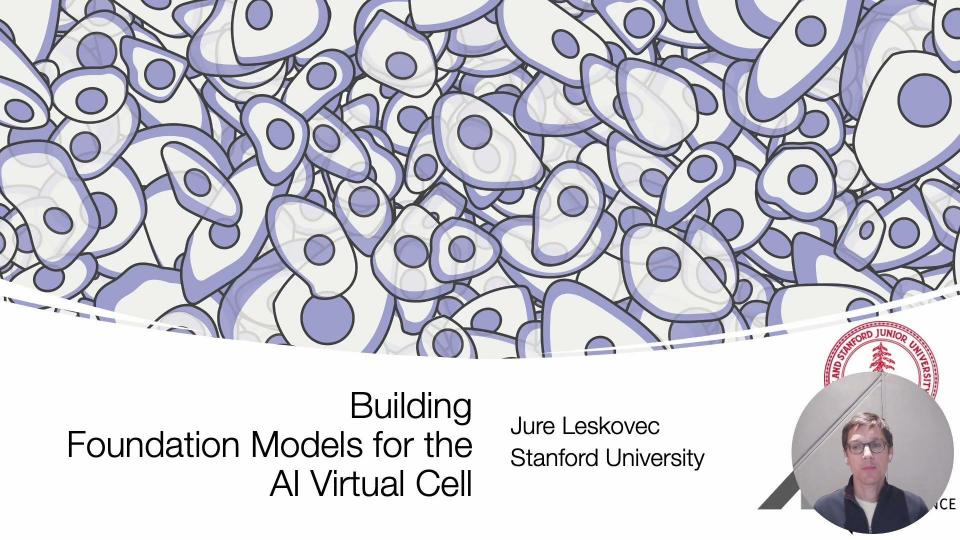
Assistant Professor Biomedical Engineering

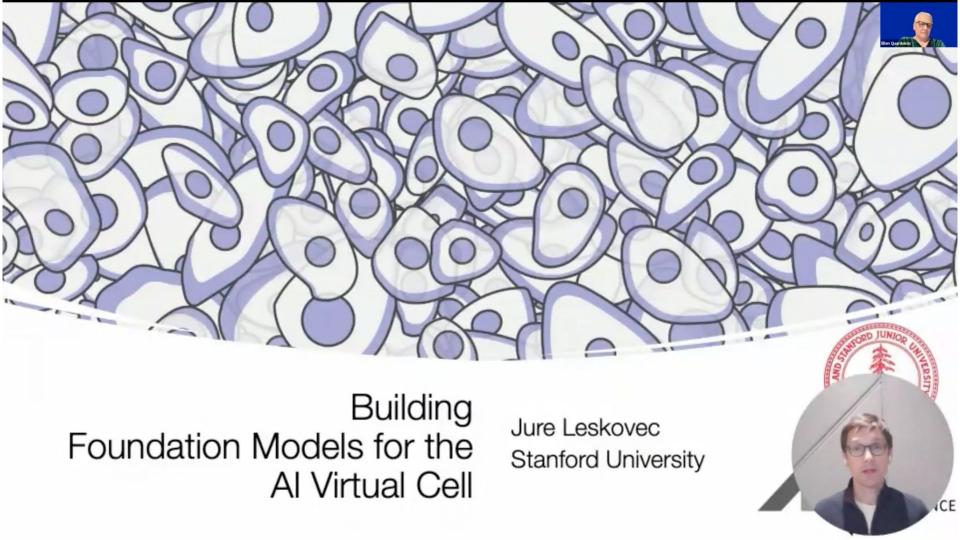
Hickey Lab: Synergy and Bridging Omics, Computation, and Engineering



Our expertise.

Tools we use.





Cell is a Fundamental Unit of Life

- Cells are essential for health and disease
- Advances in AI and omics offer new opportunities to rethink traditional models

Leading Edge

Perspective

How to build the virtual cell with artificial intelligence: Priorities and opportunities

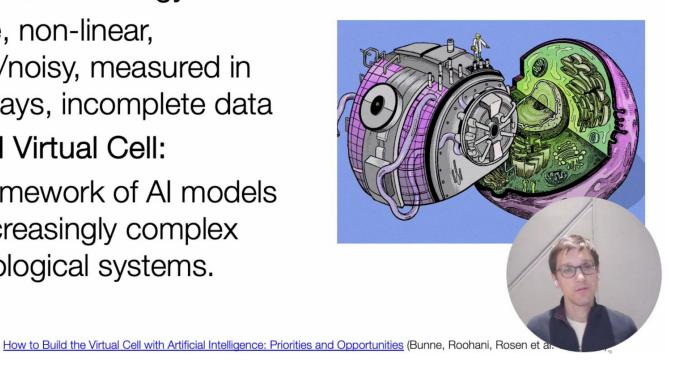
Simulating Biology with the Al Virtual Cell

How can we simulate biology?

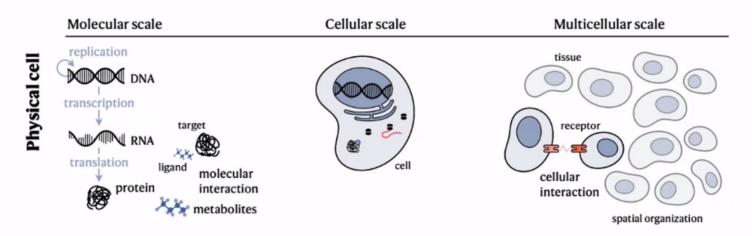
 Multi scale, non-linear, stochastic/noisy, measured in different ways, incomplete data

We create an Al Virtual Cell:

A connected framework of Al models that simulate increasingly complex and dynamic biological systems.

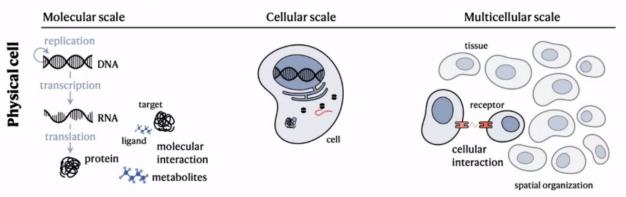


Connecting Biology's Physical Scales

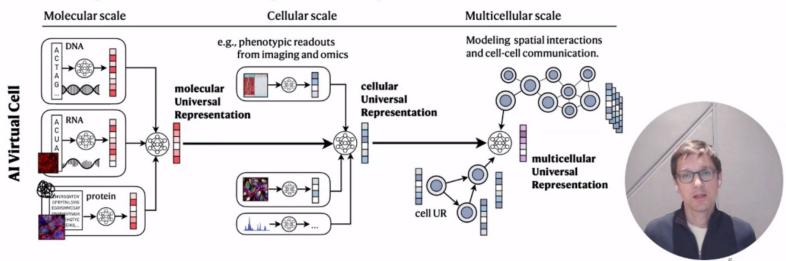


A connected framework of AI models that simulate increasingly complex and dynam biological systems.

a. Cellular building blocks, environments, ...

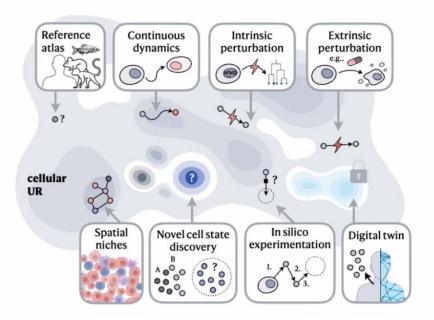


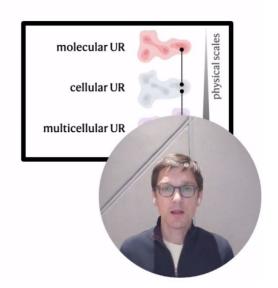
b. Building the AI Virtual Cell through Universal Representations ...



The Power of Representation Learning

Learning universal representation spaces unlocks fundamental capabilities for biomedicine.





Virtual Instruments

1. Manipulate:

Embedding -> Embedding

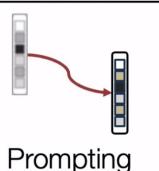
What happens to a cell after a drug is applied?

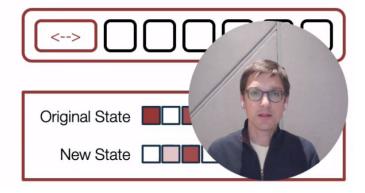
2. Decode:

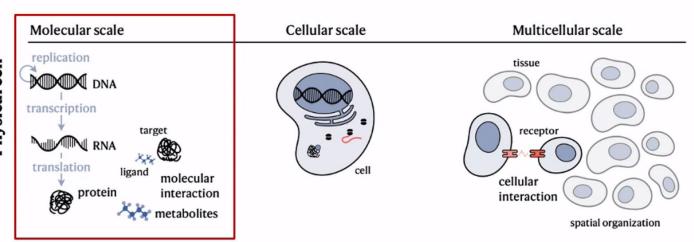
Embedding -> Readout

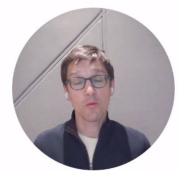
What is the 3d structure of a protein?

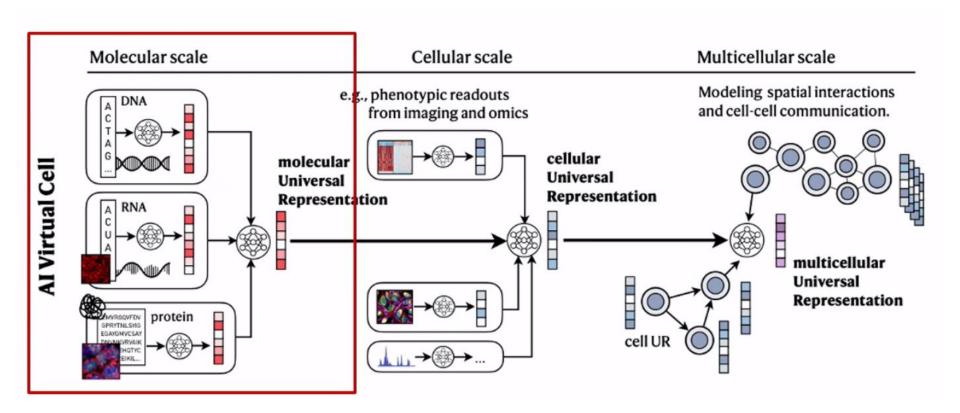
Diffusion Models











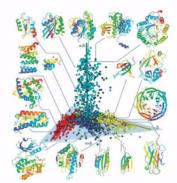
Protein Language Models

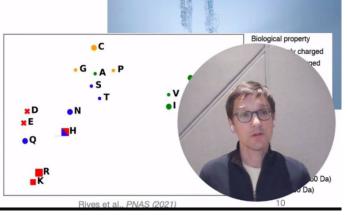
Protein Language Models: ProtT5, ESM encode the whole protein universe

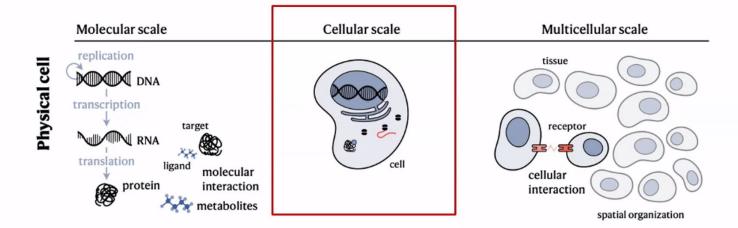
- Motivated by ChatGPT & AlphaFold
- Trained on 250M+ proteins

Protein Embeddings encode:

- Structure
- Molecular propt.
- Orthology







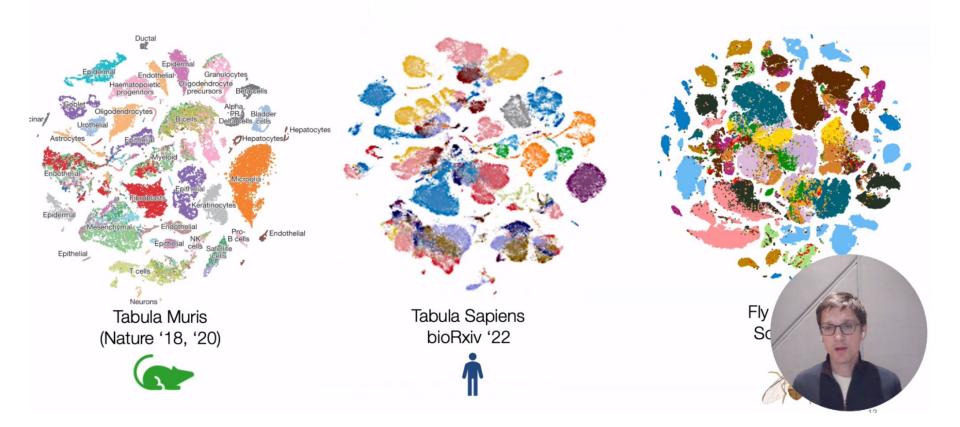
Universal Cell Embeddings

Yanay Rosen*, Yusuf Roohani*, Ayush Agrawal, Leon Samotorčan, Stephen Quake, Jure Leskovec

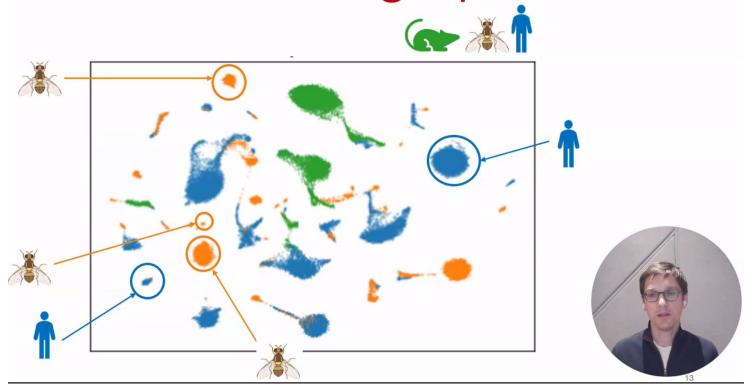
Universal Cell Embeddings: A Foundation Model for Cell Biology (Rosen, Roohani et al. Preprint)

Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN (Rosen, Brbic, Roohani et al. Nature In

Cell Atlas Datasets

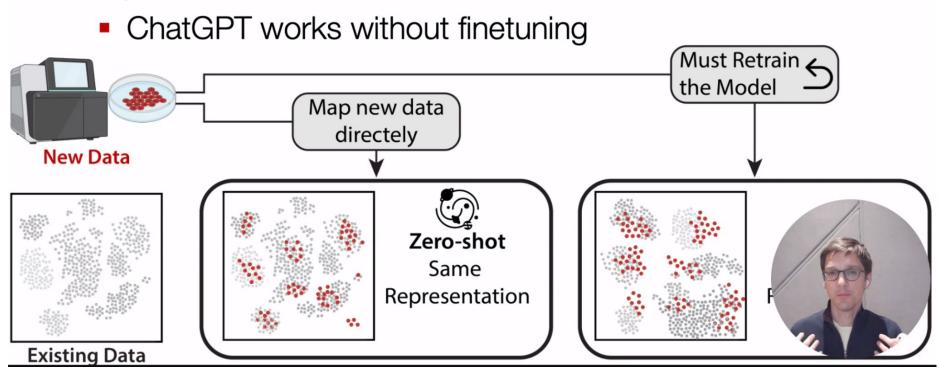


Goal: Cross-Species Cell Embedding Space

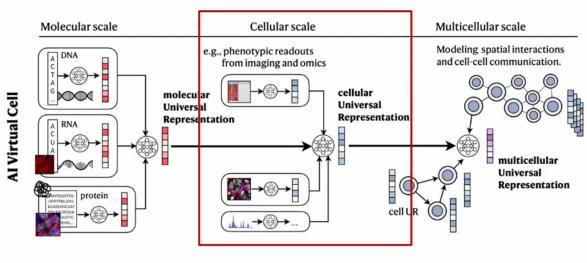


Universal Spaces are *Fixed*

Representations of data should be consistent and fixed



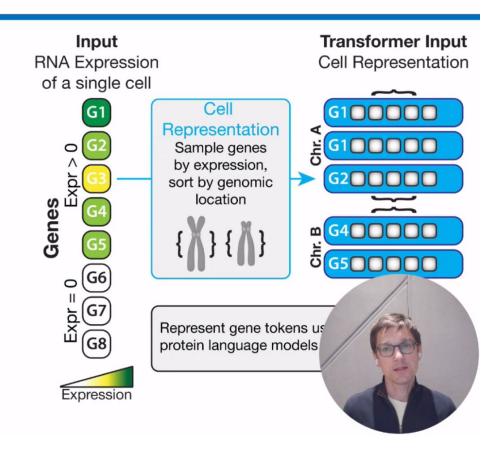
We built a Cellular-Scale Foundation Model



The Universal Cell Embedding (UCE) Model

Key Model Choices

- Gene expression is not natural language
- A universal space is a fixed space
 - Foundation Models are zero-shot
- Self-supervised
 - Organization is emergent



The Universal Cell Embedding (UCE) Model

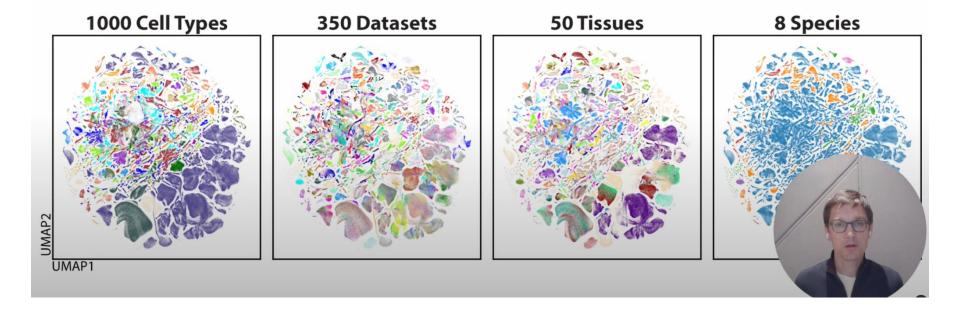
Key Model Choices Input **Transformer Input** Representation Ge Biologically Inspired Transformer nat - 33 Layers, 650M Parameters A u fixe - Trained for 40 days on 24 A100 80GB GPUs Self-supervised Represent gene tokens us Organization is

emergent

protein language models

Integrated Mega-scale Atlas (IMA)

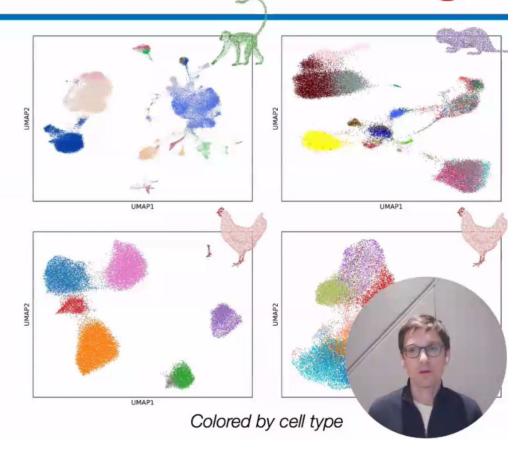
Emergent organization of 36M cells



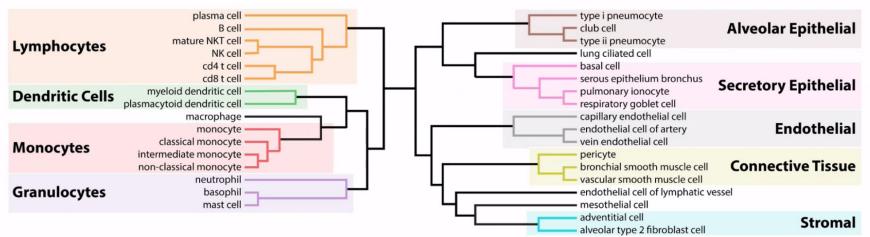
Map new data with no fine-tuning

Map new data to same fixed space

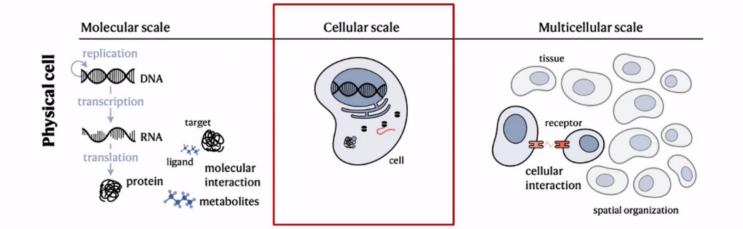
Even novel species! (No BLAST)



Cell Type Organization Naturally Emerges



Tabula Sapiens v2 Lung Inferred Cell Hierarchy

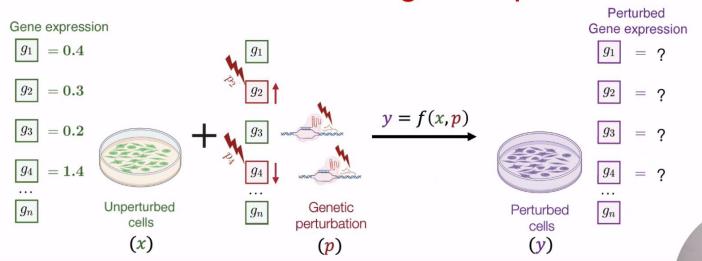


GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations

Yusuf Roohani, Kexin Huang, Jure Leskovec Stephen Quake, Jure Leskovec

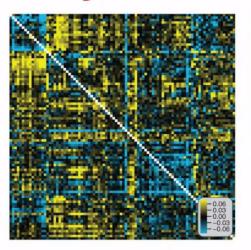
Problem Formulation

Predict the outcome of a genetic perturbation



What is the gene expression response of perturbing combination of genes not seen experimentally perturbed

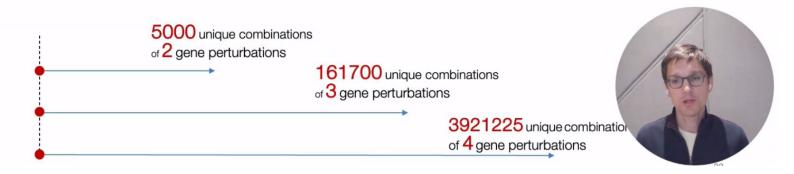
Why Predict Perturbation



Perturbational space is too vast to be explored experimentally

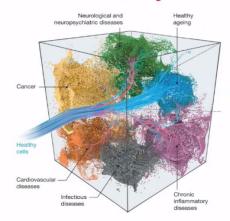
There are 4x10⁸ pairwise combinations of all known protein coding genes

Pick 100 genes



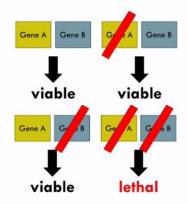
Why is this useful?

Drug target discovery



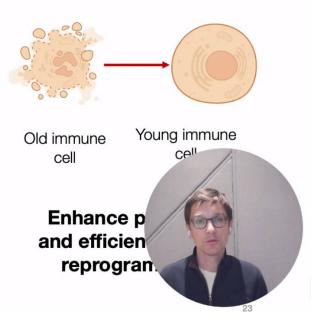
Identify therapeutic targets that can reverse disease phenotypes

2. Identifying genetic interactions

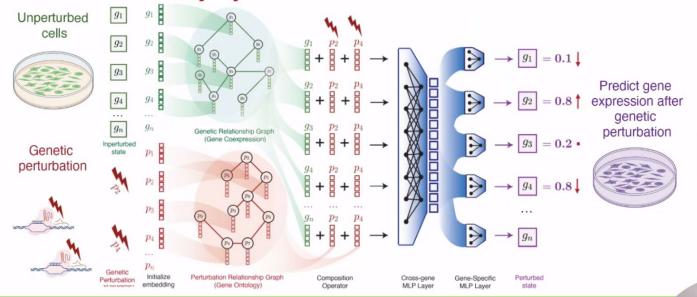


Predict genetic interactions

3. Reengineering cells



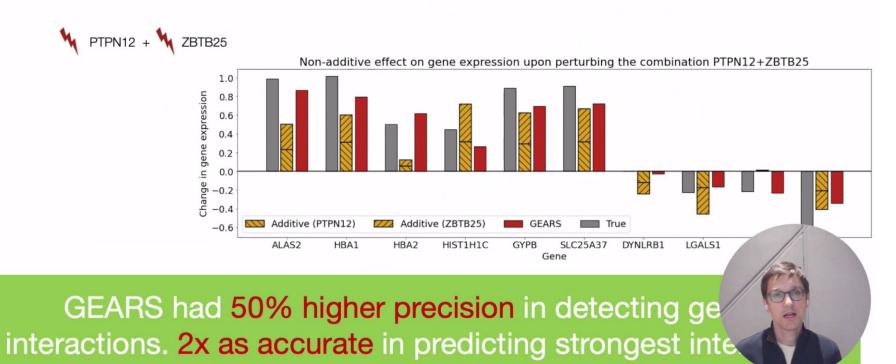
Our Approach: GEARS



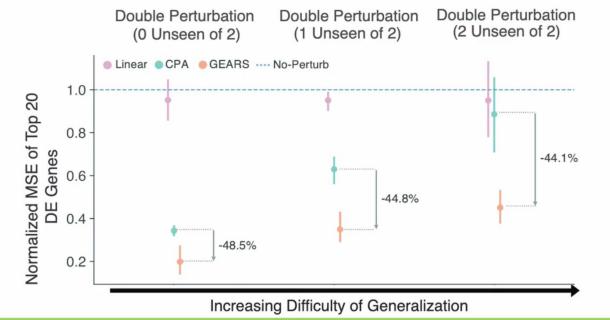
A <u>deep learning model</u> constrained by <u>pri</u> <u>knowledge</u> of gene-gene relationships

GEARS: Predicting transcriptional outcomes of novel multi-gene perturbations Yusuf Roohani, Kexin Huang, Jure Leskovec, Nature Biotech, 2023

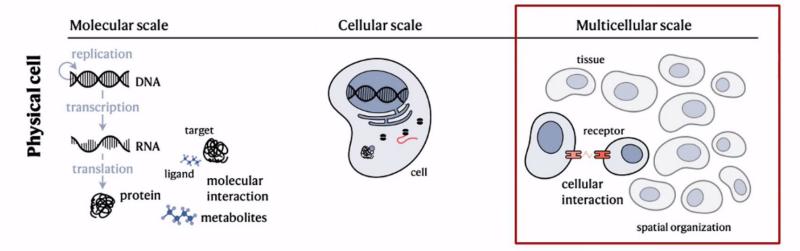
Results: Predicting non-additive genetic interactions



Generalizing to unseen genes



GEARS outperforms other approaches in prediction outcomes of genetic perturbation by 45%.



Annotation of Spatially Resolved Single-cell Data with STELLAR.

Brbic*, Cao*, Hickey*, Tan, Snyder, Nolan, Leskovec Nature Methods 2022.

Spatially Resolved Single-Cell Data

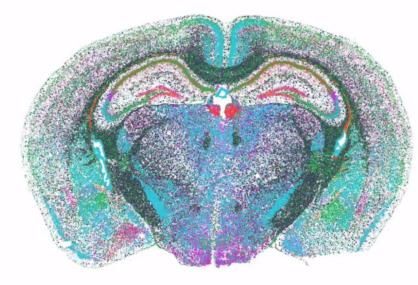
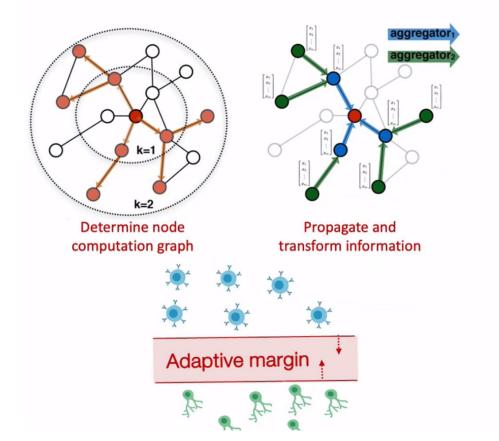


Figure from Vizgen MERFISH Mouse Brain Receptor Map dataset

- Captures spatial context of cells
- Each cell is represented with a smaller number gene/protein expressions and cell coordinates

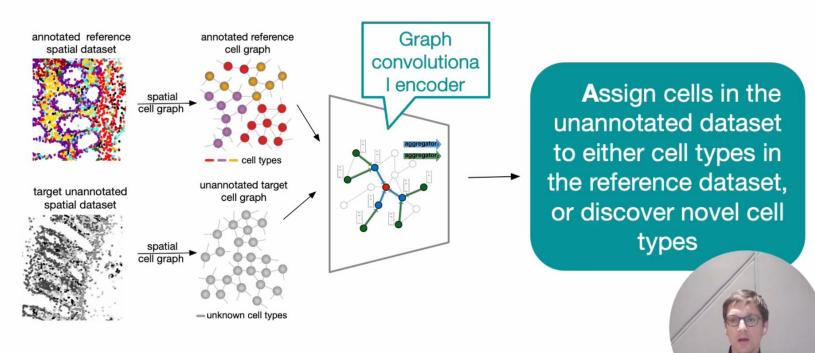
Goal: capture spation of the cettheir molecular feature

Solution: Graph Neural Networks



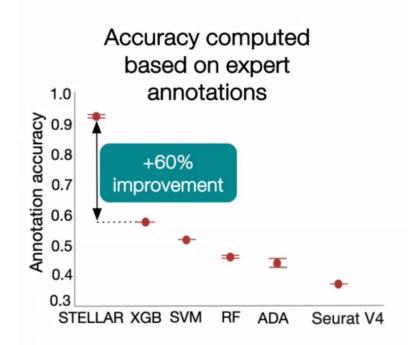
Capture spatial and molecular context of cells using graph convolutional neural networks

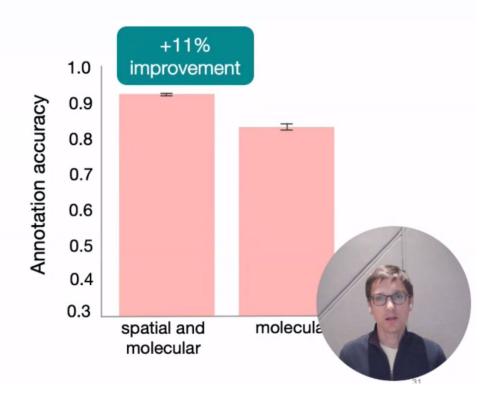
Our Method: STELLAR



Annotation of Spatially Resolved Single-cell Data with STELLAR. Brbic*, Cao*, Hickey*, Tan, Snyder, Nolan, Leskovec. *Nature Methods 2022.*

STELLAR: Cell labeling





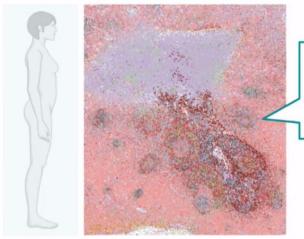
Can We Annotate Cancer Donor Tissue using Healthy Donor Tissue?

Colors denote

different cell

types

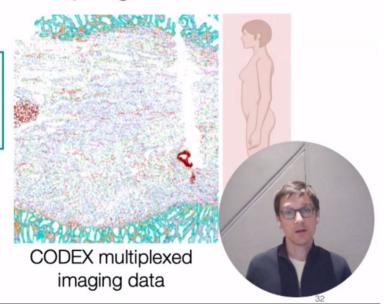
Reference labeled data: Healthy tonsil tissue



CODEX multiplexed imaging data

Unlabeled data:

Esophageal cancer

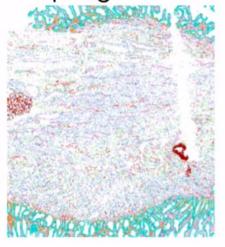


Can We Annotate Cancer Tissue using Healthy Tissue?

Healthy tonsil tissue

CODEX multiplexed imaging data

Esophageal cancer



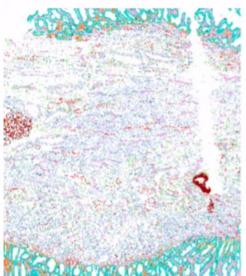
CODEX multiplexed imaging data

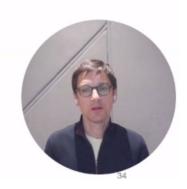
- Distribution between cell types and their spatial organization is different
- 3 out of 12 cell typ only in the cancer

STELLAR Correctly Annotates Cancer Tissue

Cells are colored according to their cell types

Ground truth

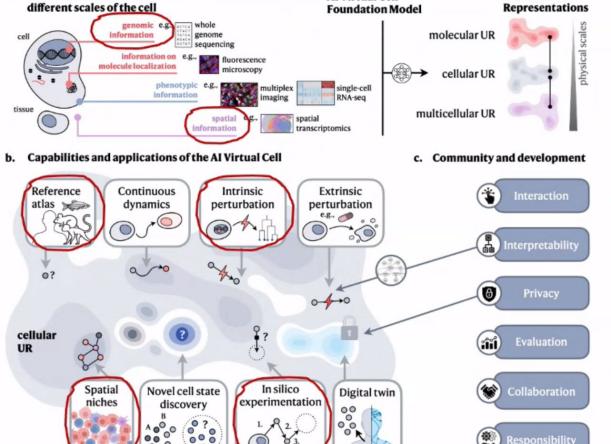


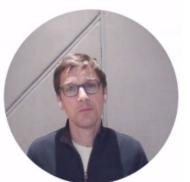


Conclusion: Al Virtual Cell

AI Virtual Cell

Multi-modal measurements across





Universal

Papers

- How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities, Bunne, Roohani, Rosen et al. Cell '24.
- <u>Universal Cell Embeddings: A Foundation Model for Cell Biology</u>. Rosen, Brbić, Samotorčan, Roohani, Quake, Leskovec, '24.
- MARS: Discovering Novel Cell Types across Heterogenous Single-cell
 Experiments. Brbic, Zitnik, Wang, Pisco, Altman, Darmanis, Leskovec. Nature Methods '20
- Annotation of Spatially Resolved Single-cell Data with STELLAR. Brbic* Hickey*, Tan, Snyder, Nolan, Leskovec. Nature Methods 2022.
- GEARS: Predicting transcriptional outcomes of novel multi-gene per Yusuf Roohani, Kexin Huang, Jure Leskovec, Nature Biotech, 2023.

Acknowledgements

PhD Students

Camilo Ruiz

Hongyu Ren

Hamed Nilforoshan

Qian

Huang

Kaidi Cao

Serina

Chang

Kexin Huang

Weihua

Hu

أرامكو السعودية saudi aramco

amazon

Industry Partnerships

UnitedHealth Group®

gsk

GlaxoSmithKline

(intel)

WIKIPEDIA The Free Encyclopedia

DARPA

CHAN **ZUCKERBERG** INITIATIVE

Jared

Davis

Michi

Yasunaga

Yusuf Roohani

Industrial Visitors

Post-Doctoral Fellows

Michael Moor

Tailin Wu

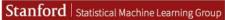
Research Staff

Stanford ARTIFICIAL INTELLIGENCE

Collaborators

IARPA Dan Jurafsky, Linguistics, Stanford U David Gleich, CS, Purdue U David Grusky, Sociology, Stanford U James Zou, Medicine, Stanford U Jochen Profit, Medicine, Stanford U Jon Kleinberg, CS, Cornell U Madhav Marathe, CS, U of Virginia Marinka Zitnik, Medicine, Harvard U Russ Altman, Medicine, Stanford U Scott Delp, Bioengineering, Stanford U Chis Manning, CS, Stanford U Sendhill Mullainathan, Economics, U Chicago Stephen Boyd, EE, Stanford U VS Subrahmanian, CS, U of Maryland

Yanan Wang



https://humanatlas.io/events/2024-24h

Questions

How do we define a Multiscale Human?

How do we map a Multiscale Human?

How do we model a Multiscale Human?

How can Large Language Models (LLMs) or Retrieval-Augmented Generation (RAGs) be used to advance science and clinical practice?

Thank you