

3PM

8PM in London (GMT), 5AM in Tokyo (GMT+9)

Funders

Moderator: Katy Börner, Indiana University

Presenters:

- Chris Kinsinger, *NIH/CFDE*
- Amy Cook, CIFAR, Canada
- Takei Kenta & Yusuke Date, Japan Science and Technology Agency, Japan
- Reed Shabman, *Interagency Modeling and Analysis Group, NIH*

Chris Kinsinger, NIH/CFDE

Cell Characterization toward Biomedical Knowledge

Chris Kinsinger, Ph.D. Assistant Director for Catalytic Data Resources Office of Strategic Coordination

Multiscale Human Event, Dec 14, 2024

National Institutes of Health Office of Strategic Coordination-The Common Fund

The NIH Common Fund Bold Science, catalyzing discoveries

Mission: To support **bold scientific programs that catalyze discovery** across all biomedical and behavioral research. Investigators and **multiple NIH Institutes, Centers, and Offices** collaborate on **innovative research** expected to address high priority challenges for the NIH as a whole and make a **broader impact in the scientific community**.

* Transformative * Catalytic * Goal-driven * Synergistic * Novel *

Each according to its kind

You may have heard of Elf on a Shelf but... Nothing can prepare you for An axolotl on Aristotle

The Cell

by gene

by protein

Cell size/shape

Ways to characterize the cell

Overall Structure of Intestine by Multi-Level Analysis of Functional Units

Single Cell Consortia

All science is either physics or philately

Attributed to Lord Ernest Rutherford, 1939

Cui bono?

- How do we integrate these data?
- How do we tie these efforts together?
- How to relate cell maps to disease?
- How do we turn these data into knowledge?

Data integration: one way

Cell Maps for AI

AI/ML

& Viz

Multi-scale map of tumor subcellular systems Cell Nested Subsystems System gRNA gRNA 2 hU6 mU6 DNA array

Al-ready datasets informing the structure & function of human cells Spatial proteomics, CRISPR

Integrated maps of human cell architecture Spanning 10⁻⁹ to 10⁻⁵ m

AI/ML human genome translation Promoting trustworthy AI

Courtesy of Trey Ideker University of California – San Diego

AI/ML

& Viz

Toxicology Screening Knowledge Graph for Structural Birth Defects = Queries Submitted: 489

Acknowledgements

Dena Procaccini Richard Conroy Trey Ideker HuBMAP Consortium CFDE program

Happy Holidays!

Thank you

commonfund.nih.go
 v
 v
 <u>@NIH CommonFun
 d
 </u>

Amy Cook, CIFAR

CIFAR

Amy Cook, PhD Head, Research Operations

WHO WE ARE

- The Canadian Institute for Advanced Research (CIFAR)
- Globally influential research organization proudly based in Canada
- We mobilize the world's most brilliant people across disciplines and at all career stages to advance transformative knowledge and solve humanity's biggest problems
- We are supported by the governments of Canada, Alberta and Québec, as well as Canadian and international foundations, individuals, corporations and partner organizations

CIFAR'S NEW DIRECTIONS

Affirming pinnacle aspiration

Opportunities for early-career researchers

Portfolio of Impact Clusters

Issues 'on the horizon'

Talent identification

Strategic partnerships

Potential for greatest impact

CIFA<u>R</u>

IMPACT CLUSTERS

- Building Thriving Societies
- Decoding Complex Brains & Data
- Exploring Emerging Technologies
- Nurturing a Resilient Earth
- Shaping the Future of Human Health

Research Programs

Leadership

Gary Bader Program Co-Director CIFAR MacMillan Multiscale Human University of Toronto Canada **Katy Börner Program Co-Director** CIFAR MacMillan Multiscale Human Indiana University United States

Sarah Teichmann Program Co-Director CIFAR MacMillan Multiscale Human Wellcome Sanger Institute United Kingdom

CIFAR's Research Program Model

CIFAR Research Programs are interdisciplinary, sustained networks focused on generating transformative knowledge.

- Comprised of 15-25 fellows from around the world (mix of career stages)
- 2-3 meetings per year: deeply collaborative networks funded for 5-year terms (renewable), with a 10-year+ horizon
- Catalyst funds to encourage collaboration

CIFAR Azrieli Global Scholars Program

The Program develops highly talented early career researchers into influential research leaders who shape the direction of boundary-pushing research.

The program has three core components:

- 1. Participating in a CIFAR Research Program
- 2. Strengthening leadership & communication skills
- 3. Increasing impact within and outside of academia

Global Research Partners include.....

Takei Kenta & Yusuke Date, Japan Science and Technology Agency

Japan Science and Technology Agency(JST)24 Hour Multiscale Human Event

Kenta TAKEI, Department of International Affairs

Yusuke DATE, Department of Strategic Basic Research

JST is a national research and development (R&D) funding agency,

which connects a wide range of stakeholders and drive new values for the global society

Founded in 1996 Budget: 240 billion JPY (2.18 billion CAD *) Number of full-time employees: 1,477

JST's Main Activities

Budget allocation

Close-up of "Research Funding"

Research funding (75.1%)

75.1%

240 billion JPY

✓ Strategic Basic Research

Create innovative technology seeds that achieve strategic goals

✓ International Collaboration

• Ensure continuous joint innovation and contribution to global challenges

✓ Industry-Academia Collaboration

• Create an environment for universities, research institutes, and industry to continuously generate innovation and promote commercialization

Close-up of "Research Funding"

Research funding (75.1%)

✓ Strategic Basic Research

240 billion JPY

✓ Industry-Academia Collaboration

Introduction of the yuCell Research Area

Department of Strategic Basic Research

Network-Based Research programs "CREST","PRESTO"

- **Funding programs for basic research to overcome the problems facing Japan and to produce creative and innovative technology seeds.**
- JST specifies Research Areas to fulfil the "Strategic Objectives" set by Japanese Government and appoints Research Supervisors (Program Officers) to lead the area.
- The Research Supervisors creates a virtual <u>Network-Based Research Institute</u> that goes beyond industry-academia-government frameworks and selects projects most suited to accomplish the <u>Strategic Objectives.</u>

Japanese Government ·····► "Strategic Objectives"

PRESTO Program Organization (for individuals)

About yuCell:

Key words

- Bioimaging
- Fluorescent protein
- Chromophore

Research Supervisor Miyawaki Atsushi

Laboratory Head, Center for Brain Science Laboratory Head Center for Advanced Photonics RIKEN

Key words

- Genome editing
- Developmental biology
- Systems genomics
- Genomics

Deputy Research Supervisor, PRESTO: Takashi Yamamoto

Professor, Graduate School of Integrated Sciences for Life Director, Genome Editing Innovation Center Hiroshima University

Strategic Objective

Development of innovative cell manipulation technologies and elucidation of cellular regulatory mechanisms

Research Area (started 2023)

yuCell

Yu = Japanese Kanji for "Play"

To approach the research "playfully"

- Embrace and enjoy research with childlike curiosity
- Pursue the unknown with an adventurous spirit.

You

About yuCell:

Key words

- Bioimaging
- Fluorescent protein
- Chromophore

Research Supervisor Miyawaki Atsushi

Laboratory Head, Center for Brain Science Laboratory Head Center for Advanced Photonics RIKEN

Key words

- Genome editing
- Developmental biology
- Systems genomics
- Genomics

Deputy Research Supervisor, PRESTO: Takashi Yamamoto

Professor, Graduate School of Integrated Sciences for Life Director, Genome Editing Innovation Center Hiroshima University

Research Area (started in 2023)

Yū"Playful Science"遊 x You x Cell: yuCell

Yū = Japanese Kanji for "Play"

To approach the research "playfully"

- Be able to embrace and enjoy confronting the mysteries of science.
- Be full of adventurous spirit when pursuing the unknown.

Slide 43

Examples of research themes covered by yuCell:

- Development of advanced technology for controlling cells in a multicellular society (organisms, organoids, etc.)
- (2) Development of advanced technology for controlling subcellular components
- (3) Development of truly innovative technology for cell control
- (4) Quantification of classic cell control
- (5) Research on social demands for cell control technology

Covers all living organisms

Research projects of yuCell

"DNA Event Recorder Cell" Research Director: Nozomu Yachie

Research Director: Nozomu Yachie (Osaka University / University of British Columbia)

"Manipulating parasites" Research Director: Kumiko Tsukui

Discovered and developed a manipulation technique to render five types of parasites Research Director: non-pathogenic.

Kumiko Tsukui (The University of Tokyo)

Develop and manipulate non-pathogenic parasites

Applications for improving disease treatment, vaccines, and drug delivery

Initiatives to Foster Human Connections

yuCell's networking event: Meet the Humans, Science Optional!

<u>Aim</u>

Create serendipitous encounters for researchers that go beyond their affiliated groups and/or research themes

Event Program

Participants talk at pre-designated tables and freely discuss topics together (1 hr. session)

BUT

- They cannot talk about science topics* for the first 10-15 minutes!
- Once the moderator gives the signal, they are free to incorporate science topics into their discussions.

* If they talk about science topics the secret agents (JST Staff) will swoop in to investigate.

Research project of yuCell (CREST)

Slide	46

	Research Director	Research Projects
ſ	Hideaki Kato	Development of magnetogenetics technologies
Sinc e, 2023	Kotaro Kimura	Session with the worm's brain through ultra-fast optical call & response
	Hirohide Saito	Construction of Functional RNA/RNP Evolution Platform and Development of Cell Regulation Technology
	Moritoshi Sato	Opto-microorganism development for optogenetic intervention and application in vivo
	Kumiko Tsukui	Manipulating parasites
	Hiroshi Nishimasu	Genome eingineering using novel DNA recombinases
L	Nozomu Yachie	DNA Event Recorder Cell
	Toshia Ando	Constructive understanding of the evolutionary origins of nanocrystal formation in vivo
Sinc e, 2024	Satoshi Okuda	Development of organ craft technology and elucidation of morphogenesis and evolution mechanisms
	Shiro Suetsugu	Morphing cell membranes at will for a universal delivery of biomaterials of choice
	Asako Sugimoto	Development of novel chromosome manipulation techniques based on nematode-specific chromosome rearrangement mechanisms
	Rei Narikawa	Playing bacteria with light
	Yoshie Harada	Quantum Smart Tool: Manipulation of neural/glial functions via thermal signaling control

Research project of yuCell (PRESTO)

Since, 2024

Researchers	Research Projects	
Tomoyoshi Inoue	Optical technologies for controlling deep brain region in mouse	
Naoko Irie	Metabolic Manipulation: Harnessing Metabolic Switch Mechanisms in Early Human Embryos	
Hiroaki Ohishi	Transcriptional manipulation through spatial crosstalk between epigenomes	
Takeshi Onuma	House construction with animal fibers on epidermal cells	
Naoyoshi Kumakura Playing with appressoria: Development of turgor pressure and adhesion control, among the highe generated by cells		
Masahiro Kumeta	Cell manipulation by an audible range of acoustic stimulation	
Keiichi Kojima	Creation of Opto-GPCRome	
Takahiro Kosugi	Development of cell manipulation technology by restoring and extending lost protein functions	
Makoto Saito	Investigation of OMEGA-associated systems for the development of molecular tools	
Keiichiro Shiraga	Cell control through visualization of water: Manipulating intracellular water	
Masaharu Somiya	Construction of designer cells by synthetic membrane fusion machinery	
Yuhei Chadani	Manipulating genetic information hidden within the amino acid sequences.	
Hideki Nakamura	Developing synthetic cytoskeletons for arbitrary manipulation of cellular movements	
Takeshi Higa	Development of opto-manipulation techniques for localization of organelles or membrane proteins	
Masahiro Fukuda	A challenge for light-controllable membrane transport	
Natsuko Miura	Iko Miura Development of tools for manipulation of cell metabolism via control of enzyme condensates	

JST's International Cooperation and ASPIRE Program

Department of International Affairs

JST's International Cooperations

ASPIRE aims:

Stimulating "international talent mobility" and "joint research"

- Encourage researchers to participate in international networks of cutting-edge research.
- Fostering young researchers and encourage their participation in sustainable international networks.

Participation in cutting-edge international networks

Participation in international networks of cutting-edge research is a key to foresting young researchers.

Good cycle of international brain circulation

Fostering young researchers to participate in future international networks

Fostering Young Researchers

ASPIRE Outline (Alignment call – Japan side call)

Slide 51

ASPIRE supports top researchers joint research project mainly focus on **mobility actions** for nurturing early career researchers.

	ASPIRE for Top Scientists	ASPIRE for Rising Scientists	
Research	AI & Information, Biotechnology, Energy, Materials, Quantum,		
fields	Semiconductors, and Telecommunications.		
Partner countries	Australia, Austria, Belgium, Canada, Czech Republic, Denmark, EU, Finland, France, Germany, Italy, Netherlands, Norway, Poland, Portugal, South Korea, Spain, Sweden, Switzerland, UK, US		
Support	Around 500 million JPY	Around 60 million JPY	
scale for	(910K CAD)	(270K CAD)	
Japan-side	for 5 years	for 3 years	

How ASPIRE works in Alignment Call

For Further Information

https://www.jst.go.jp/kisoken/c rest/en/research_area/area20 23-4.html **ASPIRE** Program

https://www.jst.go.jp/aspire/en/

Thank you for your kind attention.

Grace Peng, NIH/NIBIB & Reed Shabman NIH/NIAID, Interagency Modeling and Analysis Group (IMAG)

Reed Shabman: presenting on behalf of Grace Peng, Liz Ginexi, and IMAG

MUITISCALE

MODELING CONSORT-UM

IMAG Interagency Modeling And Analysis Group

MULTISCALE MODELING CONSORTIUM

More mechanistic insight creates a higher value product

less propagation of uncertainty

> Since 2003

Greater than the sum of its parts

MULTISCALE MODELING CONSORTIUM

Come join us! Form an Interest Group on the wiki!

https://www.imagwiki.nibib.nih.gov/ or search 'IMAG Wiki'

Alber, M., Buganza Tepole, A., Cannon, W.R. *et al.** Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. *npj Digit. Med.* **2**, 115 (2019). <u>https://doi.org/10.1038/s41746-019-0193-y</u> *Ellen Kuhl

 Peng, G.C.Y., Alber, M., Buganza Tepole, A. et al.* Multiscale Modeling Meets Machine Learning: What Can We

 Learn?. Arch Computat Methods Eng (2020). https://doi.org/10.1007/s11831-020-09405-5 *Ellen Kuhl

NATIONAL ACADEMIES

Foundational Research Gaps and Future Directions for Digital Twins

Karen Willcox (chair), Caroline Chung, Jim Kinter, Irene Qualters, Brittany Segundo

December 15, 2023

https://www.nationalacademies.o rg/ digital-twins

RE P O RT B RI E FI NG

Definition of a Digital **Twin**

A digital twin is a set of virtual information constructs that mimics the structure, context, and behavior of a natural, engineered, or social system (or system-of-systems), is dynamically updated with data from its physical twin, has a predictive capability, and informs decisions that realize value. The bidirectional interaction between the virtual and the physical is central to the digital twin.

Committee's definition builds on a definition from an AIAA and AIA Position Paper (2020)

2024 IMAG MSM Consortium Meeting

MULTISCALE

MODELING

CONSORTIUM

Setting up TEAMS for Biomedical Digital Twins (Teaming4BDT)

- September 30 -October 2, 2024
- All presentations, notes, recordings posted on the <u>IMAG WIKI</u>

Special thanks to NSF for providing Travel Awards

Special thanks to the Society for Mathematical Biology for providing refreshments

Setting up TEAMS for Biomedical Digital Twins (Teaming4BDT)

September 30 - October 2, 2024 | NIH Bethesda, MD

Day 1 - Defining Biomedical Digital Twins (BDT)

- Goal 1: To understand the NASEM Digital Twin components
- Goal 2: To identify unique features for digital twins in the biomedical domain (BDT)

Create requirements template for BDT

Day 2 - Approaches to address BDT challenges

- Goal 1: To understand the challenges unique to developing BDT
- Goal 2: To discuss needs with experts and compile BDT component resources

Create assessment template for BDT

Day 3 - Operationalizing Team Science for BDT

- Goal 1: To form BDT idea teams guided by team science approaches
- Goal 2: To present and review realizable, fit for purpose BDT ideas

Utilize consensus requirements and assessment templates developed in Day 1 and Day 2

Organized and hosted by the Interagency Modeling and Analysis Group (IMAG) and the Multiscale Modeling (MSM) Consortium

My Day Job.... Data Science & the NIAID Mission

Expand the breadth and depth of knowledge in all areas of infectious, immunologic, and allergic diseases

Respond rapidly to new and emerging threats

Facilitate data use and computational methods in research mission areas

Coordinate NIAID's data science strategy across its global portfolio of research and training initiatives

NIAID Data Ecosystem Discovery Portal Returns Results from Different Repos at Once

Finding data is a critical first step

2024 Portal Highlights

- 35 'dataset repositories'
- 20 'resource catalogues'
- Addition of "NIAID Program Collections"
- Search enabled for "Computational tools"

https://data.niaid.nih.gov/

Example: Artificial intelligence can support real time data capture for applications in immunology

"Al/ML can continuously collect and analyze data from individuals...allowing for constantly updated personalization of patient care." NASEM Report, 2023

Questions or Comments?

Email us!

Office of Data Science and Emerging Technologies (ODSET)

datascience@niaid.nih.gov

Learn more about NIAID Data Science (datascience.niaid.nih.gov)

Explore the NIAID Data Ecosystem Discovery Portal (https://data.niaid.nih.gov/)

https://www.imagwiki.nibib.nih.gov/ or search 'IMAG Wiki'

https://humanatlas.io/events/2024-24h

Questions

How do we best fund R&D toward a Multiscale Human Atlas?

How do we measure the coverage, quality, utility, and impact of Multiscale Human maps and models?

How can AI be used to advance science (management) and clinical practice?

Thank you