

5PM

10PM in London (GMT), 7AM in Tokyo (GMT+9)

Cells & Vasculature

Moderator: Katy Börner, Indiana University

Presenters:

- Chenchen Zhu, Stanford University
- Samuel L. Ewing, University of Florida
- Kevin Matthew Byrd, Adams School of Dentistry Oral and Craniofacial Health Sciences
- Archibald Enninful, Yale University
- Alex Wong, Harvard University
- Ravi Misra, University of Rochester

Chenchen Zhu, Stanford University

Understanding human intestine using single-cell spatial transcriptomics

Chenchen Zhu

Research Scientist @ Michael Snyder Lab, Stanford University

Stanford Tissue Mapping Center for HuBMAP

Emma Monte

Bei Wei

Bingqing Zhao

Map the complexity of the small bowel and colon

Table A.1. Stanford TMC production				
small bowel sites	36			
colon sites	36			
an PNA and				
SII RINA-seq	122			
sn AIAC-seq	122			
CODEX 2D and 3D maps	122			
Spatial RNA maps	110			
bulk RNA-seq	8			
bulk ATAC-seq	16			
WCS				
WGS	17			
metabolomics	56			
lipidomics	32			
proteomics	26			

Histology of full thickness sections of human duodenum

Spatial technology to better understand tissue biology

Bulk assays

Single-cell RNA-seq

Spatial omics

Why spatial transcriptomics (RNA)?

- High target number higher resolution for mapping cell types and states
- Flexibility in target choice not limited to antibody availability
- Gene regulation
- Multiomics integration

Two quantification principles of spatial transcriptomics Detection by sequencing Detection by imaging (targeted multiplexed FISH)

Unbiased survey Low mRNA capture rate Limited spatial resolution

Targeted approach High spatial resolution High capture rate Limited field of view

Jeffrey Moffitt et al, Nature Review Genetics, 2022

Stereo-seq for FFPE tissue sections

Stereo-seq maps cell types of human intestine duodenum

- 1*1 cm chip with 4.6B reads for 186,000 cells
- Profiled > 32,000 genes with 56.6M transcripts

Human intestine FFPE profiled using Xenium

Duodenum of B015

Cell types in human intestine revealed using Xenium

Summary: Lead ST assays for Stanford HuBMAP TMC

- Stereo-seq for discovery, Xenium for data production
- Both FF-OCT and FFPE compatibility
- Whole tissue sections
- High reproducibility and sensitivity

Acknowledgement

Samuel L. Ewing, University of Florida

Multi-omics spatial mapping for human pancreas

Clayton Mathews, Martha Campbell-Thompson, James Carson, Ernesto Nakayasu, Ying Zhu, Sam Ewing, Jing Chen, Yumi Kwon, Dongtao Fu, Tyler Segendorf, Geremy Clair, Wei-Jun Qian

VCCF Human Pancreas

Sam Ewing, Martha Campbell-Thompson University of Florida 12/14/2024

Image Source: https://www.livescience.com/44662-pancreas.html

Introduction to the Human Pancreas

Image Source: https://www.neuroendocrinecancer.org.uk/pancreas-pei-pert/

Islets of Langerhans and Type 1 Diabetes

<u>Type 1 Diabetes:</u>

- Autoimmune disease
- Immune system attacks pancreatic islets, killing beta cells
- Beta cells responsible for insulin release and glucose metabolism
- T1D leads to glucose dysregulation

Image Source: https://www.britannica.com/science/islets-of-Langerhans/

Microvascular Alterations in T1D

Vessel diameter decreases and vessel density increases in T1D

These alterations are most significant in INS- islets

Canzano, J.S. et al., 2019 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309032/)

Data Collection

- Whole pancreases acquired from organ donors
- 8 control pancreases analyzed from HuBMAP
- 12 pancreases (6 control, 3 autoantibody positive, 3 type 1 diabetes) from another study analyzed
- Multiplex IF performed as part of spatial profiling using NanoString GeoMx technology
- Protein markers: insulin (INS), PanCK (duct), CD31/34 (vasculature)

Cell Segmentation with QuPATH Software

QuPATH software: https://qupath.github.io/

HRA Cell Distance Explorer: https://apps.humanatlas.io/cde/

Cell Distance Explorer HRA Preview Application

HRA Cell Distance Explorer: https://apps.humanatlas.io/cde/

Beta Cell Distance Distributions

HuBMAP Control Pancreases

AAb+ and T1D Donors

HuBMAP violin plots courtesy of Yashvardhan Jain

Thank you!

Dr. Martha Campbell-Thompson Dr. Dongtao Fu Dr. Heather Kates Dr. Katy Borner Yashvardhan Jain All other collaborators

Kevin Matthew Byrd, Virginia Commonwealth University

Anchoring Oral and Craniofacial Cell Types within Digitized Vasculature Networks

Kevin Matthew Byrd, DDS, PhD

Assistant Professor, Virginia Commonwealth University

Member, VCU Massey Comprehensive Cancer Center; the NIH The HuBMAP Human BioMolecular Atlas Program PI, Lab of Oral & Craniofacial Innovation (LOCI@VCU); Founder, Human Cell Atlas Oral & Craniofacial Bionetwork

Human Reference Atlas, "Multiscale Human" Event: Virtual Meeting; December 14th, 2024

@kevinmbyrd in @k

in @kevinmbyrd o @kevinmatthewbyrd

Heterogeneity of Oral and Craniofacial Tissues.

Oral is Aerodigestive; i.e., a part of Digestive and Respiratory Systems.

Orofacial Granulomatosis

Angular & Exfoliative Chelitis

Erythema Multiforme

Severe Gingivitis

Mucogingivitis

Gingival Hyperplasia

Tongue Fissuring

Staghorn Lingual Ducts

Lichenoid Mucositis

Buccal Cobblestoning

Deep Linear Ulceration

Aphthous Ulceration

Oropharyngeal Ulcerations

Generalized Erythema

Candidiasis

Cell and Molecular Dissection of this Heterogeneity to Promote Health Holistically

References.

Translating Data Into Clinical Insights for Infectious, Autoimmune, and Cancer						
nature communications		8				
Article	https://doi.org/10.1038/s41467-0	024-49037-у				
Single-cell and spat interactomics of to keratinocytes in p	tially resolved both-associated TITLE: GZMK+CD8+ T cells Target A Specific Acinar AUTHORS: Thomas J.F. Pranzatelli ^{1,2} , Paola Perez ³ , Anson Ku ⁴ , Abed ³ , Shyh-Ing Jang ³ , Eiko Yamada ³ , Kalie Dominick Quinn T. Easter ³ , Alan N. Baer ¹⁰ , Elleen Pelayo ¹⁰ , Magon ²¹ , Sarthak Gupza ^{1,10} , Christopher Lessard Robert J. Morell ¹⁶ , Changyu Zheng ¹⁶ , Nicholas Rach Aure ¹⁸ , Mohammad H. Dezfulian ¹⁹ , Ross Lake ²⁰ , Sa Sowalsk ⁴ , Katarzyna M. Tyc ⁶ , Jinze Liu ⁶ , Johann G Chiorini ¹ , Blake M. Warner ^{3,10+}	 Cell Type in Sjägren's Disease Bruno Matuck², Khoa Huynh⁶, Shunsuke Sakal⁷, Mehdi Zara Ahmed³, Amanda Oliver², Rachael Wasikowsk⁹, Zohreh Khavandgar³¹⁰, David E. Kleiner¹¹, M. Teresa Spatial Deconvolution of Cell Types and C Khoa L. A. Huynh^{1*}, Katarzyna M. Tyc^{12*}, Bruno F. I Nikhil V. Kumar³, Paola Pérez⁸, Rachel Kulchar ⁹, Theresa M. Weaver³, Xufeng Qu², Luiz Alberto Valeni E. Kleiner⁹, Stephen M. Hewitt⁹, Luiz Fernando Fer Blake M. Warner⁵, Kevin M. Byrd^{3,5,11#}, Jinze Liu^{1,2#}. 	Sell States at Scale Utilizing TACIT Watuck ^{3*} , Quinn T. Easter ³ , Aditya Pratapa ⁴ , Thomas Pranzatelli ⁶ , Deiziane de Souza ⁷ , te Soares Junior ⁸ , Marisa Dolhnokoff ⁷ , David Metacellular Networks and Proteo Siddharth Sheth ¹² , Nikhil Ku John Kaczmar ⁸ , Bhisham Chera ⁵ , Jr ¹ Lneberger Comprehensive Cancer Center, Uni ¹ Lineberger MD, USA. ¹ Lineberger MD, JSA. Moria Coral Scranidacial Innovation, Departmer ¹ Gathersburg, MD, USA. ¹ Lineberger MD,	mic Ecotypes Predict Anti-PD-(L)1 Response in HNSCC mar ² , Bruno Matuck ³ , Khoa Huynh ⁴ , Allison Deal ² , ames Bonner ⁹ , Jared Weiss ¹ a, Jinze Lu ⁴ , Kevin M. Byrd ^{2,4,7} Jniversity of North Carolina School of Medicine, University of North Carolina versity of North Carolina School of Medicine, University of North Carolina versity of North Carolina at Chapel Hill, Chapel Hill, NC, USA. t of Innovation & Technology Research, ADA Science & Research Institute,		
			 ⁹ Hollings Cancer Center, Medical University of 2 O Neal Comprehensive Cancer Center, Univers ⁷ Division of Oral and Craniofacial Health Scienc Chapel Hill, NC, USA, * Contributed equally 	The Immunoregulatory Architecture of the Adult Oral Cavity Bruno F. Matuck, Khoa L. A. Huynh, Diana Pereira, XiuYu Zhang, Meik Kunz, Nikhil Kumar, Quinn T. Easter, Alexandre Fernandes, Ameer Ghodke, Alexandre V. Predeus, Lili Szabó, Nadja Harnischfeger, Zohreh Khavandgar, Margaret Beach, Paola Perez, Benedikt Nilges, Maria M. Moreno, Kang I. Ko, Sarah A. Teichmann, Adam Kimple, Sarah Pringle, Kai Kretzschmar, Blake M. Warner, Inês Sequeira, Jinze Li Kevin M. Byrd doi: https://doi.org/10.1101/2024.12.01.626279 This article is a preprint and has not been certified by peer review [what does this mean?].		

P1: Oral & Craniofacial Cell Atlas of Healthy Adults.

Oral Mucosal Sites Support an Activated Innate Immune Population

- . . .

Interactive cell type annotation in spatial omics

Choose Signature
Browse No file selected
Choose slide with annotation
Browse No file selected
Select samples
·
Select annotation
Select Point Size
0.1 0.5 2
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2
Select Cell Type
Select All Deselect All

S	ipatial neighborhood	Spatial Autocorrelation Cell	Type Spatial Aut	cocorrelation Marker	Compare annotation		
C	Cell type and Cell state						
This spa	s tab displays a spatial ma tial map.	ap annotated with various cell	types. Use the contr	ols in the sidebar to sel	ect different annotations	and visualize them on t	ne
53		A A A A A A A A A A A A A A A A A A A					-
			Sh K-cytes	Basal K-cutos	Stroma 1	troma 2 Stroma	3

UMAP with annotation

Dotplot

TACIT threshold

Annotation quality

Spatial map with annotation Spatial map with expression

Oral & Craniofacial Cell Atlas of Healthy Adults: Spatial Proteomics

Digitizing the Peripheral Vasculature within Whole Tissues

Variation and Heterogeneity using Vascular Anchors Among Oral Tissues

CV (Coefficient of Variation) is a standardized measure of dispersion of a distribution. (which cell types or regions have more relative variability regardless of their absolute distances)

For Region variability, Parotid shows the highest variability in median distances.

For Cell Type variability, Melanocytes and Dendritic Cells show the highest variability.

Vascular Anchors for Cell Type Distribution, comparing Spatial Transcriptomics and Proteomics

Vascular Anchors for Cell-Cell Communication.

*****Spatial Health + Disease Atlas:** ~2000 samples with ~50,000,000 cells across 10 upper airway niches and 13 diseases from health to various conditions such as periodontitis, Sjogren's, COVID-19, and multiple cancers.

Thank You.

LOCI (Maryland)

Lab of Oral & Craniofacial Innovation (LOCI)

- **Quinn Easter**
- **Terrie Weaver**
- Nikhil Kumar

- Bruno Matuck
- Akira Hasuike
- **Brittany Rupp**
- Zabdiel Alvarado-Martinez Lijiang Fei

Human Cell Atlas Oral & Craniofacial Bionetwork

- Ines Sequeira •
- Kai Kretzschmar
- Muzz Haniffa
- Sarah Pringle

- Ana Caetano ٠
- Adam Kimple
- Michel Koo
- Many Others... ٠

Salivary Disorder Unit (NIH/NIDCR)

- Blake M. Warner .
- Shyh-Ing Jang
- Paola Perez Thomas Pranzatelli •

Department of Biostatistics (Massey/VCU)

Jinze Liu

Katarzyna Tyc

- Khoa Huynh
- Xufeng Qu

Mapping the Pediatric Inhalation Interface Network

- Jim Hagood
- Fabian Theis
- Herbert Schiller
- Mandy Bush

- Ric Boucher
- Purushothama Tata
- Arjun Guha
- Anne Hilgendorf

Archibald Enninful, Yale University

PhD Student, Rong Fan Lab Biomedical Engineering Department Yale University

Spatial multi-omics profiling of human lymphoid tissues

Yale HuBMAP TTD

Prof Rong Fan, Prof Yang Liu, Prof George Tellides, Dr. Fu Gao, Dr. Mingyu Yang, Dr. Dongjoo Kim, Archibald Enninful, Negin Farzad, Yao Lu

Overview of Lymph nodes

- The primary lymphoid organs (bone marrow and thymus) are responsible for immune cell production and maturation, whereas secondary lymphoid organs (lymph nodes, spleen, tonsils) are the sites for lymphocyte activation.
- Lymph nodes are found at the convergence of major blood vessels.
- Approximately 800 nodes in an adult human.
- Located in the neck, axilla, thorax, abdomen, and groin.

Lymph nodes samples

33 whole lymph nodes FFPE samples (n=16) FF samples (n=17)

Lymph node taken from multiple sites in the body:

- Axillary
- Inguinal
- Groin
- Submental
- Neck

Primary assay used is mIF (CODEX)

Sample	FF/FFPE	Age
LN21291	FF	71
LN13560	FF	74
LN6243	FF	78
LN00837	FFPE	86
LN24333	FFPE	66
LN21333	FFPE	25
LN23574	FFPE	34
LN22921	FFPE	55
LN27766	FFPE	52
LN00560	FFPE	25
LN21756	FFPE	22

Lymph nodes highlighted in yellow have VCCF visualizations

Lymph nodes samples

Block numbers	Age (yo)	<u>Gender</u>	Location	Race	FF/FFPE
YHLN-N6	63	М	rt inguinal	black	FF
YHLN-N8	29	F	hilar	black	FF
YHLN-N9	54	F	submental	black	FF
YHLN-N17	78	F	lt axillar	black	FF
YHLN-N2	62	м	lt neck	hispanic	FF
YHLN-N22	22	F	lt neck	hispanic	FFPE
YHLN-N27	25	F	right neck	hispanic	FFPE
YHLN-N4	70	м	rt inguinal	pt refused	FF
YHLN-N1	73	F	left groin	white	FF
YHLN-N3	68	м	lt neck	white	FF
YHLN-N5	62	F	left tonsil	white	FF
YHLN-N7	75	F	lt axillar	white	FF
YHLN-N10	1	м	It neck	white	FF
YHLN-N11	2	М	lt axillar	white	FF
YHLN-N12	20	м	rt neck	white	FF
YHLN-N13	71	F	It inguinal	white	FF
YHLN-N14	74	М	lt neck	white	FF
YHLN-N15	84	F	rt axillary	white	FF
YHLN-N16	86	м	lt neck	white	FF
YHLN-N18	62	м	rt neck	white	FFPE
YHLN-N19	81	м	rt base of tongue	white	FFPE
YHLN-N20	65	м	right axillary	white	FFPE
YHLN-N21	45	F	lt axillar	white	FFPE
YHLN-N23	50	м	right neck	white	FFPE
YHLN-N24	74	F	right inguinal	white	FFPE
YHLN-N25	74	F	right inguinal	white	FFPE
YHLN-N26	86	м	left axillary	white	FFPE
YHLN-N28	55	м	right neck	white	FFPE
YHLN-N29	34	м	left neck	white	FFPE
YHLN-N30	55	F	left neck	white	FFPE
YHLN-N31	22	м	right axilla	white	FFPE
YHLN-N32	61	М	right groin	white	FFPE
YHLN-N33	63	F	right axilla	white	FFPE

55%

Workflow

Gallery of Lymph nodes samples

86-year-old LN-00837 01-01

75-year-old LN-8905 01-04

75-year-old LN-8905 01-05

66-year-old LN-24336 01-01

55-year-old LN-22921 02-01

25-year-old LN-00560 01-01

52-year-old LN-27766 01-01

22-year-old

LN-21756 02-01

34-year-old LN-23574 03-01

24-year-old LN-21333 01-01

CODEX Panel

Protein markers covers all the major immune cell types

CD44	SMA	Ki67		Pan-Cytokeratin
CD31	CD8	CD66		IDO1
Vimentin	HLA-A	IFN-G	HLA-E	E-cadherin
Collagen IV	CD3e	HLA-DR	LAG3	CD11e
Podoplanin	CD21	Granzyme B		ТОХ
	Beta-actin	CD68		HMGB1
CD38	PCNA	CD39	VISTA	yH2AX
	Mac2/Galectin-3	FOXP3		P21
CD107a	EpCAM	MPO		CDKN2A/p16
CD45RO	CD45	PD-L1		

Representative CODEX images

CODEX and scRNA-seq data integration pipeline

We created a human single cell reference by merging two single-cell RNA-seq datasets: Tabula Sapiens (TS) and an integrated secondary lymphoid organ (SLO) atlas

Profiling of Healthy Lymph Nodes using CODEX

B_Cycling B naive B GC DZ Macrophages_M1 B GC LZ T CD4+ B_preGC B activated **B** IFN DC cDC2 T_CD4+_TfH T CD8+ naive DC_CCR7+ T CD8+ CD161+ DC_cDC1 B GC prePB T_TIM3+ NKT Mast

Annotation of human lymph node

Vascular Common Coordinate Framework Visualizations

Registering tissue block to organ

ACKNOWLEDGEMENTS

<u>Advisor</u>

Professor Rong Fan

Fan Lab members

- Negin Farzad Alev Baysoy Shuozhen Bao Graham Su Xiaoyu Qin Mingyu Yang Mingze Dong Jungmin Nam Bo Tao Xiaolong Tian Yao Lu
- Zhiliang Bai Anthony Fung Haikuo Li Di Zhang Mei Zhong Fu Gao Keyi Li Dongjoo Kim Yaping Li Fang Wang Junchen Yang Lou Xing

Collaborators

Professor Zongming Ma Jane Zhang (University of Pennsylvania) Dmytro Klymyshyn (Akoya Biosciences) Professor Lingyan Shi (UC San Diego) Yajuan Li (UC San Diego)

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Alex Wong, Ph.D. Postdoctoral Fellow, Sorger Lab Harvard Medical School

Highly Multiplexed 3D Tissue Imaging of Human Tissue and Tumors

HUBMAP

Laboratory of Hi-I-S Harvard Program in Therapeutic Science

3D Features in Cancer

Three Modalities of High-Plex 3D Imaging

1. 3D reconstructive fluorescence microscopy

J. Lin et al., Cell, 2023

2. Confocal microscopy / Widefield + Deconvolution

C. Yapp et al., BioRxiv, 2023

3. Light-Sheet Microscopy

Serial Section Reconstruction

Specimens and data collection strategy **3D Imaging** Sample CRC1 Fibrillar tumor budding Section number 7 14 20 25 29 34 39 44 49 54 59 64 69 74 78 84 86 91 97 102 106 Cross-sectional views 1. Distal budding "Single cells" 4. Proximal budding Large clusters Distal budding Small clusters & 5. Proximal tumor 85.86 5 µm thick 4 um thick "single cells" H&E (22) CyCIF (25) - main panel GeoMx (1) CyCIF (3) - targeted panels Main tumor mass 3. Medial budding Small clusters EMT-like phenotype in budding region

J. Lin et al., Cell, 2023

Standard Slides don't even capture whole cells!

Laboratory of Systems Pharmacology

Partial cells lead to inaccurate phenotyping

Neutrophil

C. Yapp et al., BioRxiv, 2023

Many immune markers are diffraction-limited spots

Integrating thick tissue 3D Images into HuBMAP CCF

5 10 15 20 25 30 45

Distance (µm)

Laboratory of Systems Pharmacology

CD68

T-Killer

Light-Sheet is faster

Laboratory of Systems Pharmacology

Credit: https://www.edmundoptics.com/knowledge-center/application-notes/microscopy/light-sheet-fluorescence-microscopy/

Tissue clearing allows deeper imaging

Tan, T, Yang, Z, Li, X, et al. J Anat. 2021

Light-sheet imaging of colorectal tissue

Visualizing vasculature of healthy colon

Acknowledgements

Leadership

Peter Sorger

Sandro Laura Santagata Maliszewski

MicRoN

Paula Montero Llopis

Laboratory Operations

Tenzin Phulchung

Scott Anderson Slimmer **Experiment Design and Techniques**

Clarence Zoltan Tuulia Jerry Ajit Maliga Johnson Muhlich Vallius Lin Yapp

Roxanne Brigette Kobs Pelletier

Yvonne Benjamin Yu-An Gaudio Chen Anang

Shishir

Pant

Emmanuel

Ogbonna

Daniel Lu Soheil Talemi

Zivuan Markovic Zhao

Collaborating physicians/scientists

Christine Lian Shannon Coy

PDOTS

Cloud Lauren David Barbie Zasadil Pawaletz

Sample Coordination

Crystal Chiu Sabrina Chan

3D Analysis/Imaging (UTSW)

Gaudenz Kevin Danuser

Jinlong Lin Hazel Borges

н

Laboratory of Systems Pharmacology

Ravi S. Misra, Ph.D. Research Associate Professor University of Rochester

Utilizing multiplex immunofluorescence microscopy to study pediatric lung disease

HuBMAP-Lung TMC

PI /PD(Contact): Gloria Pryhuber

SubAward PIs: Christopher Anderton (OSP), Geremy Clair (DAC), Gail Deutsch (OSP), Jim Hagood (OSP), Xin Sun (OSP)

Program Managers: Ravi Misra (OSP), Jeanne Holden-Wiltse (DAC)

Project Manager: Heidie Huyck

An overview of the lung organ and the alveolar gas exchange unit

https://www.spectrumhealthlakeland.org/lakelanddiabetes/diabetes-health-library/Content/85/P01300/ https://www.pedilung.com/pediatric-lung-diseasesdisorders/anatomy-of-a-childs-lung/alveolus-gas-exchangepulmonary-alveolus/

Lung organogenesis: forming a complex organ

https://www.nature.com/articles/s41572-019-0127-7

Preterm birth and exposure to hyperoxia can lead to persistent lung damage: Bronchopulomonary Dysplasia

Adapted from https://www.nature.com/articles/s41372-024-01957-9/

Preterm birth and exposure to hyperoxia can lead to persistent lung damage: Bronchopulomonary Dysplasia

https://www.mdpi.com/1422-0067/23/3/1254

Studying BPD and control lung samples from the BRINDL repository

Healthy Lung

Detecting cell types in the lung using immunofluorescence microscopy (Phenocycler)

Endothelial Cells

Muscle Cells

Immune Cells

Epithelial Cells

Extracellular Matrix

Dr. Jeffery Purkerson https://www.protocols.io/view/813-1-multiplexed-immunofluorescence-phenocycler-f-6qpvr38dpvmk/v2

Imaging of healthy and diseased lung

Healthy Lung

BPD Lung

BPD lungs have a higher number of immune cells near vascular cells

Healthy Lung

BPD Lung

Dr. Yashvardhan Jain Dr. Katy Borner

Future work to increase the number of cases and analytes

Reveals beauty and complexity of lung architecture.

Highly vascular and immune cell rich region around bronchus

Note:

lymphatics, muscular bronchial blood vessels of varying diameter, ciliated duct cells, mast cells, nerve, B cell and T cell rich aggregates

5 yo W M, 30 antibody panel

URMC **Tissue, CODEX, Informatics**

Ravi Misra, PhD

URMC

Gloria Pryhuber, MD (Contact PI)

Gautam Bandyopadhyay, PhD

Anthony Corbett, MS Lead Res Data Engineer

John Ashton, PhD

Matthew Jehrio, MS Jeff Purkerson, PhD

Heidie Huvck, BS

Jeanne Holden-Wiltse,

Genomics Res Center Cameron Baker, MS Jeff Malik, PhD

Marti Preston

U Wash Pathology Histopathology, QA, Interpretation

Gail Deutsch, MD

Small Airway Dissection, GeoMx SRS Imaging Jim Hagood, MD Kenichi Okuda, MD-PhD Lingyan Shi, PhD

Xin Sun, PhD

Kyle Gaulton. PhD

HuBMAP-Lung TMC Village

NIH OPTN NDRI IIAM

UCSD

Epigenomics, Spatial and sn/scTranscriptomics, Label Free Imaging

Rongbo Li

LungMAP, HuBMAP, HCA Consortia

Elizabeth Duong, MD Jamie Verheyden. PhD

Jisun Chin

UCSD Center for Epigenomics Quan Zhu, PhD Allen Wang, PhD

Heather Olson

PNNL

MPLEx, MSI N-Glycan

Geremy Clair, PhD Chris Anderton, PhD Jennifer Kyle

Brittney Gorman

Mereena Ushakumary

Josh Adkins, PhD

https://humanatlas.io/events/2024-24h

Questions

How do we best capture data for a Multiscale Human?

How do we map a Multiscale Human?

How do we model a Multiscale Human?

How can LLMs or RAGs be used to advance science and clinical practice?

Thank you