

7AM

12PM in London (GMT), 9PM in Tokyo (GMT+9) Theoretical Biology and History of Biology **CIFAR**

Moderator: Yashvardhan Jain, Indiana University

Presenter: Manfred Laubichler, Arizona State University

Manfred Laubichler, Arizona State University and Santa Fe Institute

Arizona State University

On the Dynamics of the Anthropocene

Manfred D. Laubichler

SANTA FE INSTITUTE

THE ANGEL OF HISTORY

Angelus Novus, Paul Klee

This storm irresistibly propels him into the future to which his back is turned, while the pile of debris before him grows skyward. This storm is what we call progress. -Walter Benjamin

The Challenge

- We have entered the Anthropocene— a consequence of complex and long co-evolutionary dynamics!
- We are shaping and engineering our planet at global scales
- Humankind is no longer in a safe operating space
- New Global Challenges emerge at rapid pace that contribute to *systemic risks and systems' failures*
- A new scientific understanding is needed to meet these challenges

The deep history of evolved complexity — a story of major transitions

- The origin of life, cellular life, multicellular life, etc.
- Major interconnected transitions in:
 - Organization, including social organization
 - Energy systems
 - Knowledge and information flows
 - Material Flows
- Emerging layers of complexity and feedbacks
- The Technosphere is such a major transition in evolution

The Technosphere as a major transition in evolution

Laubichler, Renn, Winkelmann, Roberts, Schlosser, in preparation

Standard Evolutionary Theory is insufficient

Figure 1: The Standard Evolutionary Framework.

Standard Evolutionary Theory is insufficient

- □ Selection as the main effective feedback mechanism
- □ Explanations of the origin of variation outsourced to physics
- Evolutionary dynamics as a temporal sequence of allele
 frequencies
- □ Implicit assumption of optimization
- ODEs as the mathematical structure with a strong preference towards equilibrium dynamics

Extended Evolutionary Theory

Laubichler and Renn, 2015

Extended Evolutionary Dynamics

Over evolutionary time scales the interaction between systems and their niches exhibits two types of simultaneous dynamics:

Externalization: Actions of the system construct the niche and stable aspects of the constructed niche then act as regulatory elements contributing to the control of the system's behavior

Internalization: Elements of the niche that have the potential to regulate system behavior are incorporated into the regulatory network in a stable way (often replacing previous internal elements)

Extended Evolution

- Emphasis on complex systems transformations and multiple feedback mechanisms
- Developmental mechanisms explain the origin of variation
- □ Evolutionary history not time
- Path-dependency and construction
- Mathematical structure more complex focused on stochastic processes and non-equilibrium dynamics

Mathematically integrating development, heredity and population dynamics

Developmental (fine) Time Scale: k=1,...,K developmental time points

term

Latent states

$$\mathbf{x}_{d,k}^{t} = f(\mathbf{x}_{d,k-1}^{t}, \mathbf{w}_{d,k}^{t})$$

Possibly nonlinear state transition function

Noisy measurements

$$\mathbf{y}_{d,k}^t = d(\mathbf{x}_{d,k}^t, \mathbf{v}_{d,k}^t)$$

Possibly nonlinear measurement function Measurement noise term

Noise parameters

$$\boldsymbol{\theta}_{d,k}^t \sim \nu(\boldsymbol{\theta}_{d,k-1}^t, \boldsymbol{\theta}_{d,k}^t)$$

Developmental Trajectory for d-th individual in generation t $\mathbf{X}_{d,(K)}^t = \{\mathbf{x}_{1,d}^t, \mathbf{x}_{2,d}^t, ..., \mathbf{x}_{K,d}^t\}$

Mathematically integrating development, heredity and population dynamics

The developmental trajectory becomes the input for next time scale

$$\mathbf{X}_{d,(K)}^{t} = \{\mathbf{x}_{1,d}^{t}, \mathbf{x}_{2,d}^{t}, ..., \mathbf{x}_{K,d}^{t}\}$$

Intergenerational (coarse) Time Scale: t=1,...,T Generations

Possibly nonlinear transition function (also encodes a time-varying network describing interactions between individuals in a population)

 $\tilde{\mathbf{X}}_{d,t}^{(K)} = g(\tilde{\mathbf{X}}_{d,t-1}^{(K)}, \mathbf{X}_{d,(K)}^{t}, \hat{\mathbf{w}}_{d,t})$

Measurements
$$\mathbf{Y}_{d,t}^{(K)} = egin{smallmatrix} b(ilde{\mathbf{X}}_{d,t}^{(K)}, \hat{\mathbf{v}}_{d,t}) \\ & \dagger \end{bmatrix}$$

Possibly nonlinear measurement function

Coarse time scale noise parameters

$$\stackrel{\text{le}}{\mbox{\tiny rs}} \ \Lambda_{d,t}^{(K)} \sim \eta(\Lambda_{d,t}^{(K)},\Lambda_{d,t+1}^{(K)})$$

*Cool note: setting **k=1**, iterate over **t**, can recover population genetics models; setting **t=1**, iterate over **k**, can recover models of development/GRNs

The Technosphere as a major transition in evolution

Laubichler, Renn, Winkelmann, Roberts, Schlosser, in preparation

The dynamics of the Anthropocene

Our "natural" metabolic rate ~90 watts Our social metabolic rate ~11,000 watts

UNBOUNDED GROWTH REQUIRES **CYCLES OF INNOVATION TO AVOID** COLLAPSE

SOCIOECONOMIC METRIC

The Question

CAN WE EXTEND THIS FRAMEWORK TO THE SOCIO-ECONOMIC DYNAMIC AND EVOLUTION OF THE ENTIRE PLANET CONSIDERED AS AN INTEGRATED, NETWORKED COMPLEX ADAPTIVE SYSTEM (THE ANTHROPOCENE)?

D. Painter, M. Laubichler, C.P. Kempes & G.B. West; work in progress

Biological Scaling

BIOLOGICAL METABOLIC RATE (B)

THIS IS THE RATE AT WHICH ENERGY NEEDS TO BE SUPPLIED TO AN ORGANISM IN ORDER TO:

• MAINTAIN ITS PRESENT INACTIVE STATE (BASAL METABOLIC RATE)

100 Watts or 2000 calories a day

BIOLOGICAL METABOLIC RATE (*B*)

THIS IS THE RATE AT WHICH ENERGY NEEDS TO BE SUPPLIED TO AN ORGANISM IN ORDER TO:

• MAINTAIN ITS PRESENT INACTIVE STATE (BASAL METABOLIC RATE)

ACTIVE METABOLIC RATE IS APPROXIMATELY 2-3 TIMES BASAL METABOLIC RATE WITH APPROXIMATELY THE SAME EXPONENT

THIS WAS TRUE FOR HUMAN BEINGS IN OUR "NATURAL" STATE

FOR MODERN HUMANS, ACTIVE METABOLIC RATE

\approx SOCIAL METABOLIC RATE (Y)

THIS IS THE RATE AT WHICH ENERGY, IN ITS BROADEST SENSE, NEEDS TO BE SUPPLIED IN ORDER TO:

i) MAINTAIN THE SOCIO-ECONOMIC SYSTEM, INCLUDING ALL INFRASTRUCTURE AND INDIVIDUALS, IN ITS PRESENT STATE

i) EFFECT CHANGE BY GROWING OR DEVELOPING NEW INFRASTRUCTURE, PEOPLE, IDEAS, INSTITUTIONS, ETC, ETC

Our "natural" metabolic rate ~90 watts

Our social metabolic rate ~11,000 watts

We are equivalent to a 30,000 kg Gorilla

12 Elephants

TIME EVOLUTION (GROWTH) OF THE TECHNOSPHERE

SOCIAL METABOLIC RATE

(RATE AT WHICH ENERGY, IN ITS BROADEST SENSE, IS SUPPLIED FOR)

= MAINTENANCE

(OF THE SOCIO-ECONOMIC SYSTEM IN ITS PRESENT STATE, INCLUDING ALL INFRASTRUCTURE AND INDIVIDUALS)

NEW GROWTH

(ADDING NEW INFRASTRUCTURE, PEOPLE, IDEAS, INSTITUTIONS, ETC, ETC)

BORROWING THE CONCEPT OF AN "EXTENDED PHENOTYPE" FROM BIOLOGY, EXPRESS THIS IN TERMS OF THE ENERGY BUDGET OF

"EXTENDED INDIVIDUALS" WHICH INCLUDES THEIR ASSOCIATED PHYSICAL AND SOCIAL INFRASTRUCTURE AND INTERACTIONS

SUPPLY MAINTENANCEGROWTH

i) IN SOME SMALL TIME INTERVAL Δt THE SUPPLY OF SOCIAL METABOLIC ENERGY IS

$$Y(N)\Delta t = \left[\sum_{j=1}^{N} R_j(N)\right] \Delta t + \sum_{j=N}^{N+\Delta N} E_j(N)$$

R_{j} (N) = RATE AT WHICH THESE RESOURCES ARE USED BY THE j^{th} INDIVIDUAL TO MAINTAIN HIS/HER/ITS LIFE-STYLE, ETC)

 $E_i(N) = COST OF ADDING THE jth INDIVIDUAL TO THE POPULATION$

ii) AVERAGE AND TOTAL COSTS

FOR BASAL MAINTENANCE

$$\bar{R}(N) \equiv \frac{R(N)}{N} = \frac{1}{N} \sum_{j=1}^{N} R_j(N)$$

$$\bar{E}(N) \equiv \frac{E(N)}{N} = \frac{1}{N} \sum_{j=1}^{N} E_j(N)$$

FOR ADDING NEW INDIVIDUAL

iii) WHICH CAN BE EXPRESSED AS

$$\frac{dE(N)}{dt} = Y(N) - R(N)$$

LEADING TO

$$\frac{dN}{dt} = \frac{N}{\beta_E(N)} \left[\frac{Y(N) - R(N)}{E(N)} \right]$$

$$\beta_E(N) \equiv \frac{d\ln E(N)}{d\ln N}$$

THE ANTHROPOCENE EQUATION REDUCES TO

$$\frac{dN}{dt} = \frac{N}{\beta_E T} \left[\frac{Y(N)}{R(N)} - 1 \right]$$

WHERE

$$\beta_E(N) \equiv \frac{d\ln E(N)}{d\ln N}$$

IN THE BIOSPHERE

MAINTENANCE NEEDS (DEMAND) GROW FASTER THAN SUPPLY (METABOLIC RATE IS SUB-LINEAR)

\Rightarrow GROWTH EVENTUALLY CEASES LEADING TO A FINITE SIZE OR FINITE CARRYING CAPACITY

IN THE **TECHNOSPHERE**

SUPER-LINEAR SOCIAL METABOLIC RATE (THE SUPPLY) GROWS FASTER THAN MAINTENANCE NEEDS (THE DEMAND)

 \Rightarrow OPEN-ENDED GROWTH

SUPERLINEAR SCALING LEADS TO UNBOUNDED GROWTH

Population of Mexico City

BUT IT ALSO LEADS TO

A FINITE TIME SINGULARITY AT $t = t_c$

AND COLLAPSE WHEN $t > t_c$

THE NOT SUCH GOOD NEWS!

UNBOUNDED GROWTH REQUIRES ACCELERATING **CYCLES OF INNOVATION TO AVOID** COLLAPSE

TIME

SOCIDECONOMIC METRIC

SEQUENCE OF SINGULARITIES

POWER LAW APPROXIMATION (MOTIVATED BY NETWORKS & DATA)

$$Y(N) = Y_0 N^{\beta}$$
$$R(N) = R_0 N^{\beta_R}$$
$$E(N) = E_0 N^{\beta_E}$$

LEADS TO "EXACT" SOLUTION

$$N(t) = \left(rac{R_0}{Y_0}
ight)^{1/\gamma} \left[rac{1}{1-e^{-(t_c-t)/T_0}}
ight]^{1/\gamma}$$

WHER $\gamma \equiv \beta - \beta_R$ AND THE SINGULARITY AT $t = t_c$ IS GIVEN BY

$$t_c - t_0 \approx \left[\frac{1}{N_0^{\gamma}} \frac{R_0}{Y_0}\right] T_0 = \left[\frac{R(N_0)}{Y(N_0)}\right] T_0$$

THE APPROACH TO THE SINGULARITY AS $t \rightarrow t_c$

$$N(t) = \left(\frac{R_0}{Y_0}\right)^{1/\gamma} \left[\frac{T_0}{t_c - t}\right]^{1/\gamma}$$

THEORY PREDICTS THAT LOGARITHMIC

PLOTS OF MAJOR SOCIO-ECONOMIC METRICS

(ENERGY, WATER,....) AGAINST THE TIME TO

THE NEXT SINGULARITY:

 $\log Y(t) vs. \log (t_c - t)$

SHOULD YIELD STRAIGHT LINES WITH PREDICTED

VALUES OF THE SLOPES AND INTERCEPTS

When will we reach the next singularity?

5.0

SUGGESTS THERE WAS A SIGNIFICANT "PARADIGM SHIFT" AND WE AVOIDED A SINGULARITY IN MID-1970'S (AROUND 1975) SPECULATIONS?

WHY 1975 MATTERS?

The phenotype of the Great Acceleration

However, once we analyzed this in the context of the Anthropocene Equation

We found that most of these time series have a breaking point around 1975

Breakpoint Analysis and Regression Data

	Bkpt.	(b) T_c	(b) α	(b) β	(b) <i>RSS</i>	(a) T_c	(a) α	(a) β	(a) RSS
Pop	1990	2070	9.9579	-1.8825	0.00754	2070	5.3777	-0.8411	0.00181
GDP	1975	2030	16.8496	-3.4522	0.009	2070	12.8135	-2.1577	0.0257
FDI	1976	2030	45.9047	-12.4274	4.211	2070	40.8427	-9.7455	4.1214
Energy	1976	2070	23.6423	-3.9532	0.0071	2070	12.0791	-1.4092	0.0144
Fertilizer	1976	2070	41.0339	-8.0031	0.0588	2070	8.808	-0.9034	0.1452
Dams	1976	2070	27.5555	-5.3904	0.0205	2070	7.3844	-0.9358	0.1108
Water	1976	2070	16.818	-3.464	0.02	2070	4.5376	-0.763	0.0249
Paper	1976	2070	27.5113	-4.9343	0.0626	2070	15.5778	-2.3176	0.0866
Cars	1975	2070	31.1649	-5.5566	0.0032	2070	18.7008	-2.8096	0.137
Phones	1960	2030	150.4055	-36.0515	4.2076	2030	12.0812	-3.4157	0.8229
Tourism	1974	2070	53.2723	-10.4434	0.0129	2070	20.3643	-3.2765	0.0912
CO_2 ppb	1975	2030	6.3865	-0.1481	0.0001	2070	7.3671	-0.3443	0.0001
CO_2 emm.	1975	2070	38.3286	-4.7437	0.0038	2030	19.1967	-0.6279	0.029
NO_2 ppb	1975	2030	6.063	-0.0913	< 0.0001	2070	6.4724	-0.1693	< 0.0001
NO_2 emm.	1985	2070	23.2238	-1.8763	0.0148	2030	15.2467	-0.1009	0.0411
NH_4 ppb	2005	2070	10.8704	-0.7966	0.0639	2070	8.2579	-0.193	< 0.0001
NH_4 emm.	1975	2070	19.0718	-0.7818	0.001	2030	16.7394	-0.2914	0.0383
Ozone	1990	2070	31.4243	-6.2237	2.6573	2070	2.97775	0.2674	0.3402
Temp.	2000	2070	48.7216	-11.5685	3.9842	2070	1.9832	-0.6672	0.0164
Oceans	1975	2030	2.4001	-0.1054	0.0001	2070	3.2059	-0.2686	0.0001
Fish	1985	2070	23.1329	-4.22	0.8764	2030	4.0347	0.0556	0.0351
Shrimp	1995	2070	70.0562	-16.1437	6.95956	2070	31.6365	-7.3796	0.25515
Forests	1975	2070	7.7973	-1.0383	0.0109	2070	5.8471	-0.617	0.0015
Dom. Land	1975	2070	1.5169	-0.5538	0.0057	2070	-0.4229	-0.131	0.0023
EPO Pat.	1985	2070	122.8245	-25.2107	0.9996	2070	19.2434	-1.9703	0.4205
USPTO Pat.	1975	2070	29.7506	-4.0308	0.0905	2030	16.0729	-1.2328	1.6252
WoS Pubs.	1975	2070	55.2422	-9.2019	0.2478	2030	17.6028	-1.053	0.1233

Table 2: Breakpoint Regression Data. (b) = Pre-breakpoint, (a) = Breakpoint and beyond.

Waves of acceleration: timing of largest acceleration events —Jonathan Donges

Examining the Relationship Between Population Growth and CO2 Emissions from Fossil Fuels—Jochen Büttner

MAX PLANCK INSTITUTE OF GEOANTHROPOLOGY I FIRST NAME LASTNAME

2

Population Growth and CO2 Emissions from Fossil Fuels - scaling analysis

Population Growth and CO2 Emissions from Fossil Fuels - The 1914 macro-level shift

Crucial Observations/Lessons

- Complex evolving systems are governed by regulatory structures
- Complex evolving systems construct their niches
- These dynamics introduce feedback into these systems
- Dynamically stable systems have the right balance between positive and negative feedback loops

Elimination of negative feedback in the course of human history

- Starting in the Neolithic humans began to eliminate negative feedback
- They closed the positive feedback loop between population – knowledge – energy, or the Anthropocene (innovation) engine
- As a consequence, we see the continuous acceleration of human history and the emancipation of humans from their environment
- The current crisis is the culmination of these trends

What can be done?

- Introducing negative feedback into the system
- Values, norms, laws and regulations make up the social regulatory system of humanity
- Hierarchical and lateral regulation
- Nation states and global civil society
- The role of (scientific) knowledge
- Broad, integrative and transdisciplinary knowledge

How can it be done?

DECISION A team science approach to understanding and solving complex problems. DECISION THEATER ona State ersity

Arizona State University

Thank You

Collaborators:

Günter Wagner, Rob Page, Jürgen Gadau, Peter Stadler, Carlo Jäger, Chris Kempes, Deryc Painter, Jürgen Renn, Peter Schlosser, Geoffrey West, Ricarda Winkelmann, Patrick Roberts, Chris Carleton, Sarah Wolf, Joffa Applegate

https://humanatlas.io/events/2024-24h

Questions

How do we define a Multiscale Human?

How do we map a Multiscale Human?

How do we model a Multiscale Human?

How can LLMs or RAGs be used to advance science and clinical practice?

Thank you